| Science 30 | Unit C: Physics |
| :--- | :--- |
| Lesson 2 - Field Strength | 84 mins |

## Gravitational Field Strength



## Electric Field Strength



## Science 30 - Lesson 26 - Unit C - Field Strength

Name: $\qquad$

1) Gravitational Field Strength Example

The Moon has an average radius of $1.74 \times 10^{3} \mathrm{~km}$ and a mass of $7.35 \times 10^{22} \mathrm{~kg}$.
a) Calculate the gravitational field strength of the Moon.
b) Explain why the Moon has a different value for gravitational field strength than Earth does.

$$
\left(\mathrm{g}_{\text {earth }}=9.83 \mathrm{~N} / \mathrm{Kg}\right)
$$

c) An astronaut in a new lightweight space suit has a mass of 100 kg and could be considered a test body for the gravitational field of the Moon. Determine the force of gravity exerted on the astronaut by the Moon's gravitational field.

## 2) Electric Field Strength Example

A balloon is given a charge of -4.5 nC .
a) Determine the electric field strength 30 cm from the centre of the balloon.
b) Sketch a diagram of the electric field lines around the balloon.
3) Calculate the gravitational field strength on the surface of each of the following objects:
a) Mars has a mass of $6.42 \times 10^{23} \mathrm{~kg}$ and an average radius of $3.40 \times 10^{3} \mathrm{~km}$.
b) Io, one of Jupiter's moons, has a mass of $8.94 \times 10^{22} \mathrm{~kg}$ and an average radius of $1.82 \times 10^{3} \mathrm{~km}$.
c) Determine the force of gravity of an astronaut on the surfaces of Mars and lo if the mass of the astronaut is 100 kg .
d) Identify the key features of each object that account for the differences in your previous answers.
4) Calculate the electric field strength on the surface of each of the following objects, then sketch a diagram of the electric field lines around each of the objects:
a) A student's hair stands on end as she touches the globe of a van de Graaff generator. The charge on the globe is $+3.5 \mu \mathrm{C}$ and it has a radius of 18 cm .
b) A large balloon with a charge of -4.7 nC has a radius of 17 cm .
5) All magnetic fields have a similar shape. Draw a simple diagram to illustrate how this statement applies to each of the following sources of magnetic fields.

| a current-carrying coil | a permanent magnet | Earth |
| :--- | :--- | :--- |
|  |  |  |

