Science 30	Unit B: Chemistry
Lesson 5- Quantifying Acidity	84 mins

Qualitative vs Quantitative

Observations of the senses:

- Colour, Bubbles, Heat, etc.

Observations of Instruments

- Numbers, Temp., pH, Concentration, etc

Titration

- A technique used to determine the concentration of an unknown solution by reacting it with a completely known solution.

Sart cirturaton
excess moles of sample in flask.
mare nappotm
reaction. moles
match up and
neutralize however
still excess moles
of sample
neutralized 1:1
mole ratio.

* equivalence point

22

Add I extra drop, excess titrant: Color change!

Calculating Concentration

Examples

Consider the reaction

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

If 19.8 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with an unknown molarity reacts with 25.0 mL of $0.500 \mathrm{~mol} / \mathrm{L} \mathrm{KOH}$, What is the molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$?
$\begin{aligned} {\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] } & =\frac{0.500 \mathrm{~mol}}{\mathrm{~L}} \mathrm{KOH} \times 0.0025 \mathrm{~L} \times \frac{1 \mathrm{H}_{3} \mathrm{PO}_{4}}{2 \mathrm{KOH}} \times \frac{1}{0.0198 \mathrm{~L}} \\ {\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=} & 0.316 \mathrm{~mol} / \mathrm{L}\end{aligned}$

Consider the reaction

$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
What volume of $0.200 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is required to react with 125 mL of 0.250 M acetic acid?
$L \mathrm{Ca}(\mathrm{OH})_{2}=\frac{0.250 \mathrm{~mol}}{L} \times 0.125 L \times \frac{1}{2} \times \frac{1 L}{0.200 \mathrm{~mol}}$
$L \mathrm{Ca}(\mathrm{OH})_{2}=0.0781 \mathrm{~L}$ or 78.1 mL

Titration of Strong Acid with Strong Base

Titration of a Weak Acid with Strong Base

Buffering is where the acid is neutralizing the base. As soon as the acid is used up the pH changes quickly!

Buffering zones PROCEED n equivalence point on a graph.

There is one Equivalence point for every H^{+}transfer

Weak acids have greater buffering because they hold on to their H^{+}stronger... don't fully dissociate.

Indicators are chosen for their transition point is within the equivalence point!

	Stoichiometry and Solution Formulas	in PH (remains $n=$ number of moles (mol) $m=$ mass (g) $M=$ molar mass ($\mathrm{g} / \mathrm{mol}$) $C=$ molar concentration ($\mathrm{mol} / \mathrm{L}$) $V=$ volume (L) $t=$ initial solution $f=$ final solution $r=$ required substance $\mathrm{g}=$ given substance $\% V / V=$ percent by volume concentration

Science 30 - Lesson 19- Quantifying Acidity

Name: \qquad

Practice Problems

1) If it takes 54 mL for 0.1 M NaOH to neutralize 125 mL of an HCl solution, what is the concentration of the HCl ?
2) If it takes 25 mL of 0.05 M HCl to neutralize 345 mL of NaOH solution, what is the concentration of the NaOH ?
3) If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid solution $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, what is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
4) Can I titrate a solution of unknown concentration with another solution of unknown concentration and still get a meaningful answer? Explain your answer in a few sentences.
5) Explain the difference between an endpoint and equivalence point in a titration.
6) A beaker contains 0.0250 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. A graduated tube (burette) is used to slowly add NaOH solution. At the instant that 15.6 mL of the 3.2 M solution of NaOH has been added, that is, the equivalence point has been reached, the titration process is stopped. What is the concentration of sulphuric acid?
7) The Following table represents the results of a titration of 25.0 mL of a 0.500 M solution of KOH with an unknown concentration of phosphoric acid

	Trial 1	Trial 2	Trial 3	Trial 4
Initial Buret Reading (mL)	0.00	21.2	0.15	19.85
Final Buret Reading (mL)	21.2	41.1	19.85	39.6
Volume of NaOH used $\left(\mathbf{v}_{\mathbf{f}} \mathbf{v}_{\mathbf{i}}\right)$	Dright Yellow	Dark Yellow	Dark Yellow	Dark Yellow
Colour at Endpoint Average volume of NaOH (mL)				

a) Complete the above chart
b) Calculate the concentration of Phosphoric acid.

