Science 30	Unit B: Chemistry
Lesson 1 - Products of Combustion Reactions	84 mins

Products of Combustion Reactions

combustion : a chemical reaction that occurs in the presence of oxygen and results in the release of energy	$\mathrm{C_xH_y}+\mathrm{O_{2(g)}}\rightarrow\mathrm{CO_{2(g)}}+\mathrm{H_2O_{(g)}}$
cellular respiration : the process by which cells convert the chemical energy stored in organic molecules (sugars) into energy that cells can use	$C_6H_{12}O_{6(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
hydrocarbon : an organic compound containing only carbon and hydrogen atoms	
fuel : a substance that releases energy when involved in a chemical reaction (often combustion) or a nuclear reaction	
emission : a substance discharged into the atmosphere or into surface water	

Balancing Combustion Reactions (Really... any chemical reaction)

3) Balance the Second Element on both sides $C_2H_{6(g)}^{\circ}$ +4) Continue till done leave oxygen til last $C_2H_{6(g)}^{\circ}$ +a) If you can't balance oxygen with a whole(2) $C_2H_{6(g)}^{\circ}$ +	+ $O_{2(g)} \rightarrow (2) CO_{2(g)} + H_2O_{(g)}$ + $O_{2(g)} \rightarrow (2) CO_{2(g)} + (3) H_2O_{(g)}$ + ??? $O_{2(g)} \rightarrow (2) CO_{2(g)} + (3) H_2O_{(g)}$ $H_{6(g)} + (7) O_{2(g)} \rightarrow (4) CO_{2(g)} + (6) H_2O_{(g)}$ vill generally end with at least ONE odd number as ficient)
--	--

Carbon Cycle

Carbon Sink and Carbon Sequestering		
Carbon Sink - CO ₂ being transformed and stored in a new substance - CO ₂ in the ocean becomes carbolic acid - CO ₂ is picked up by plants and converted into sugars	Carbon Sequestering - Injecting CO ₂ into the earth to store it	
Other Forms of Combustion		
Incomplete Combustion of Carbons - Produces CO _(g) instead of CO _{2(g)}	$2 \text{ CH}_{4(g)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ CO}_{(g)} + 4 \text{ H}_2 \text{O}_{(g)}$	
 Combustion of Sulphurs Production of SO₂ and SO₃ from the combustions of sulphur Combustion of Nitrogens Production of NO_x from the combustions of sulphur Happens at higher temperatures (650°C) 	$\begin{split} &H_{2}S_{(g)} + O_{2(g)} \to SO_{2(g)} + H_{2}O_{(g)} \text{ (combustion of Sour Gas)} \\ &SO_{2(g)} + O_{2(g)} \to SO_{3(g)} \\ &N_{2(g)} + O_{2(g)} \to 2 \text{ NO}_{(g)} \\ &2 \text{ NO}_{(g)} + O_{2(g)} \to 2 \text{ NO}_{2(g)} \end{split}$	
Combustion of Metals - Trace amounts of Mercury and Lead can be released when coal and other hydrocarbons are		

Production of Soot and Particulates

- Causes breathing problems

Sources of SO₂ and NO_x

burned

Natural - Hot springs - Volcanic outgasing	Natural Forest Fires
Man Made emissions from: • coal-fired power plants • pulp and paper mills • refining crude oil • refining oil sands • refining metals and smelting • automobiles	Man Made emissions from: • fossil fuel power plants • industrial and domestic furnaces • production of fertilizers • burning of crops • automobiles

Science 30 - Lesson 15 - Products of Combustion Reactions

Name:

- 1) Balance the following combustion reactions.
 - a) $_C_5H_{12(l)} + _O_{2(g)} \rightarrow _CO_{2(g)} + _H_2O_{(g)}$
 - b) $_C_4H_{8(g)} + _O_{2(g)} \rightarrow _CO_{2(g)} + _H_2O_{(g)}$
 - c) $_$ $C_4H_{10(g)}$ + $_$ $O_{2(g)}$ \rightarrow $_$ $CO_{2(g)}$ + $_$ $H_2O_{(g)}$
 - d) combustion of octane _____
- 2) Describe, at the atomic level, what happens to the molecules in a fuel during combustion.
- 3) "The products of a combustion reaction are dependent on the substance being combusted." Explain the meaning of this statement, and include an example.
- 4) Gasoline is a mixture of hydrocarbons, none of which contain nitrogen. Explain how the combustion of gasoline in automobiles can be considered to be a major source of the production of NO_x compounds.
- 5) The Claus process can be used to remove hydrogen sulfide from sour natural gas. The Claus process occurs in two steps:
 - a) Thermal Step (This step occurs in a furnace at high temperatures.)

$$\underline{\qquad} H_2S_{(g)} + \underline{\qquad} O_{2(g)} \rightarrow \underline{\qquad} S_{(s)} + \underline{\qquad} H_2O_{(g)}$$

- $\underline{\qquad} H_2S_{(g)} + \underline{\qquad} O_{2(g)} \rightarrow \underline{\qquad} SO_{2(g)} + \underline{\qquad} H_2O_{(g)}$
- b) Catalytic Step

$$\underline{\quad} H_2S_{(g)} + SO_{2(g)} \rightarrow S_{(s)} + H_2O_{(g)}$$

c) Balance the three reactions in the Claus process.

- d) Identify one emission, other than those listed in the equations, that is produced by the Claus process.
- e) Improvements to the Claus process focus on reducing emissions. One improvement requires the use of pure oxygen rather than atmospheric air in the furnace. Explain how the use of pure oxygen could result in a reduction to emissions from the Claus process.
- 6) In 2000, emissions of SO₂ in Canada were estimated to be 2.4×10^6 t (tonnes). Prepare a table that shows the mass of sulfur dioxide emissions from each of the sources shown in the figure bellow.

