1) A quick, inexpensive source of hydrogen gas is the reaction of zinc with hydrochloric acid (Figure 9). If 0.35
mol of inc is placed in 0.60 mol of hydrochloric acid
a) which reactant will be completely consumed

$$
\mathrm{Zn}_{0.3 \mathrm{smd}}^{2+\underset{0.60 \mathrm{mal}}{2+\mathrm{Cl}_{\text {(q) }}} \rightarrow \mathrm{H}_{2(\mathrm{~g})}}+\mathrm{ZnCl}_{2(9))}
$$

$n_{Z_{n}(\text { from } H C 1)}=0.60 \mathrm{~mol} \times \frac{1}{2}=0.30 \mathrm{~mol}-T_{\infty 0}$ mach $Z_{n} . Z_{n}$
b) whit mass of the other reaciantuilfemain tatter the reaction is complete? in excess.

$$
\begin{aligned}
& n_{Z_{n}(\mathrm{left})}=\underset{(\text { start })}{0.35 \mathrm{ml}}-0_{(\text {used })}^{0.30 \mathrm{~mol}}=0.05 \mathrm{~mol} \\
& m_{Z_{n}(\text { left })}=0.05 \mathrm{~mol} \times \frac{65.41 \mathrm{lg}}{\mathrm{~mol}}=3.27 \mathrm{~g}=30
\end{aligned}
$$

2) A chemical technician is planning to react 3.50 g of lead(II) nitrate with excess praassium bromide in solution.
a) What would be a reasonable mass of potassium bromide to use in this reaction?

$\frac{331.2 g}{\mathrm{~mol}}$

$$
\begin{aligned}
m_{\mathrm{KBr}}=3.50 \mathrm{~g} \times \frac{\mathrm{mal}}{331.2 \mathrm{~g}} \times \frac{2}{1} \times \frac{119.0 \mathrm{~g}}{m_{01}}=2.52 \mathrm{~g} \\
+10 \%
\end{aligned}
$$

b) Predict the mass of precipitate expected. \square

$$
=2.77 \mathrm{~g}
$$

$$
\mathrm{m}_{\mathrm{PbBr}_{2}}=3.50 \mathrm{~g} \times \frac{\mathrm{mol}}{331.2 \mathrm{~g}} \times \frac{1}{1} \times \frac{367.0 \mathrm{~g}}{\mathrm{~mol}}=3.88 \mathrm{~g}
$$

3) In a chemical analysis, 3.40 g of silver nitrate in solution reacted with excess sodium chloride to produce 2.81 g
of precipitate. What is the percent yield? of precipitate. What is the percent yield?
4) A solution containing 9.8 g of barium chloride is mixed with ablution containing 5.1 g of sodium sulfate.
a) Which reactantisisin indexers?

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{AgCl}}=3.40 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{169.88 \mathrm{~g}} \times \frac{1}{1} \times \frac{143.32 \mathrm{~g}}{\mathrm{~mol}}=2.87 \mathrm{~g} \text { (expected) } \\
& \% \text { field }=\text { actual } 169.88 \mathrm{j} \times 10 \%=\frac{2.819}{2.89} \times 100 \%=98.01
\end{aligned}
$$

b) Determine the excess mass.
$\mathrm{MBaCl}_{2}(1 \mathrm{lft})=(0.047 \mathrm{md}-0.036 \mathrm{~mol}) \times \frac{142.05 \mathrm{~s}}{\mathrm{~mol}}=1.6 \mathrm{~g}$
c) Predict the mass of precipitate.

$$
\mathrm{mBaSO}_{4}=0.036 \mathrm{~mol} \times \frac{1}{1} \times \frac{233.40 \mathrm{~g}}{\mathrm{~mol}}=8.4 \mathrm{~g}
$$

5) A technical college instructor wishes a first-year chemistry group to perform an investigation to practise precipitation and filtration techniques and to calculate a percent yield. The class will react 50.00 mL pipetted samples of $0.200 \mathrm{~mol} / \mathrm{L}$ potassium phosphate solution with an_ $0.120 \mathrm{~mol} / \mathrm{L}$ lead(II) nitrate solution.
a) Which reagent is intended to be the limiting reagen? $\mathrm{K}_{3} \mathrm{PO}_{4}$
$2 \mathrm{~K}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow 6 \mathrm{KNO}_{3(9)}+\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}$ 50.00 mL
$0.120 \mathrm{~mol} / \mathrm{L}$
$0.200 \mathrm{~mol} / \mathrm{L} \quad V=$??
b) What is the minimum volume of lead(II) nitrate solution required?

$$
V_{P_{b}(000)}=\frac{0.20 \mathrm{mod}}{\mathrm{~L}} \times 5000 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{0.12 \mathrm{mal}}=116.7 \mathrm{~mL}
$$

c) What volume of lead(II) nitrate solution should the instructor tell the students to use?

$$
v_{P_{b a 0_{32}}}=16.7 \mathrm{~mL}+10 \%=16.7 \times 1.1=18.3 \mathrm{~mL}
$$

d) Describe how the students can test for completeness of reaction of the limiting reagent.
See Notes. Multiple Answers.

