Chemistry 20 - Unit C - Review Booklet
Name \qquad

1. Identify the solvent and the solute in the following solutions
a. 48 mL of water in 38 mL of methanol
solute orsuen solvent \& the substance with
shute solvent Stu more moles.
2. Write dissociation equations for each of the following solid ionic compounds
a. Sodium sulfate

$$
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}
$$

b. Calcium chloride

$$
\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}
$$

c. Zinc sulfate

$$
\mathrm{ZnSO}_{4} \rightarrow \mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{2-}
$$

d. Alumium sulfate

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 2 \mathrm{Ag}^{3+}+3 \mathrm{SO}_{4}^{2-}
$$

e. Magnesium iodide
3. Write ionization equations for each of the following compounds (acids....)
a. $\mathrm{HI}_{(\mathrm{g})}$

$$
\mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}
$$

b. $\mathrm{HNO}_{3(\mathrm{aq})}$

$$
\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}
$$

c. $\mathrm{HClO}_{3(\mathrm{aq)}}$

$$
\mathrm{HClO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{ClO}_{3}^{-}
$$

d. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \text { or } \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}
$$

4. Write dissociation equations for the following ionic solids dissolving in water (bases....)
a. Sodium hydroxide

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\frac{\mathrm{OH}^{-}}{\text {Base }}
$$

$\mathrm{CO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{4}+2 \mathrm{OH}^{-}$ to the -

$$
\begin{aligned}
& \text { c. Amin inter } \rightarrow \mathrm{Al}^{3}+3 \mathrm{NO}_{3}^{-} \\
& \mathrm{AO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{OH}^{-}
\end{aligned}
$$

Predict whether the following
a. Potassium chloride
Electrolyte... ionic
b. Hydrogen chloride

Electrolyte... acid
c. Cabana dioxide electrolyte ...n non polar
d. Suluruioxide
Non electrolyte ... not acid or ionic.
6. Calculate the concentration of the following solutions
a. 29.8 g of NaCl in 250 mL of solution.

$$
\frac{\mathrm{mol}}{\mathrm{~L}} \mathrm{NaCl}=29.8 \mathrm{gan} \times \frac{\mathrm{mol}}{58.44 \mathrm{~g}} \times \frac{1}{0.250 \mathrm{~L}}=2.02 \mathrm{M}
$$

b. 49.29 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ in 3.3 L of solution

$$
\frac{\mathrm{mol}_{0}}{\mathrm{~L}} \mathrm{C}_{12} \mathrm{C}_{22} \mathrm{H}_{2} \mathrm{O}_{11}=49.29 \mathrm{~g} \times \frac{\mathrm{Imol}}{342.34 \mathrm{~g}} \times \frac{1}{3.3 \mathrm{~L}}=0.044 \mathrm{M}
$$

7. Calculate the number of moles of solute needed to make the following solutions
a. 45.0 mL of 1.15 M KCl

$$
n_{k c l}=0.0450 \mathrm{~L} \times \frac{1.15 \mathrm{~mol}}{1 \mathrm{~L}}=0.0518 \mathrm{~mol}
$$

b. 250.0 mL of $0.350 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq) }}$

$$
\begin{aligned}
& \text { b. }{ }_{\mathrm{CH}_{3} \mathrm{COOH}} \mathrm{COOH}=0.2500 \mathrm{~L} \times \frac{0.350 \mathrm{~mol}}{1 \mathrm{~L}}=0.0875 \mathrm{~mol} .60 \mathrm{H}
\end{aligned}
$$

8. Calculate the mass of solute needed to make the following solutions
a. 30.0 mL of $0.485 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}$

$$
\begin{aligned}
& m \mathrm{Na}_{2} \mathrm{CO}_{3}=0.0300 \mathrm{~L} \times \frac{0.485 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{105.99 \mathrm{~g}}{1 \mathrm{~mol}}=1.54 \mathrm{~g} \\
& { }^{\text {b. } 125 \mathrm{mLoro} .573 \mathrm{M} \mathrm{Na} \mathrm{~S}_{\text {mad }}} \\
& \mathrm{Na}_{2} \mathrm{~S}=\frac{0.573 \mathrm{~mol}}{1 \mathrm{~L}} \times 0.125 \mathrm{~L} \times \frac{78.05 \mathrm{~g}}{1 \mathrm{~mol}}=5.59 \mathrm{~g}
\end{aligned}
$$

9. Determine the concentration of the solution when $\quad C_{1} U_{1}=C_{2} V_{2}$
a. 50.0 mL of 1.95 M HCl is diluted to 115.0 mL
a. $(1.95 M)(50.0 \mathrm{~mL})=C_{2}(115.0 \mathrm{~mL})$

$$
C_{2}=0.848 \mathrm{M}
$$

$(1.48 \mathrm{M})(250.0 \mathrm{~mL})=C_{2}(750.0 \mathrm{~mL})$

$$
C_{2}=0.493 \mathrm{M}
$$

$$
\begin{aligned}
& \text { c. } \begin{array}{l}
50.0 \mathrm{~mL} \text { of } 7.90 \mathrm{M} \mathrm{KOH} \text { is distilled to on } 1.0 \mathrm{~mL} \\
(7.90 \mathrm{M}) \\
(50.0 \mathrm{~mL})^{\prime}=C_{2}(1.0 \mathrm{~mL}) \\
4.0 \times 10^{\prime} \mathrm{M}
\end{array}
\end{aligned}
$$

10. Calculate the volume of the original solution needed to make the NEW solution $C_{1} V_{1}=C_{2} U_{2}$
a. 2.50 M NaOH is used to make 490 mL of 1.23 M solution

$$
\begin{aligned}
& (2.50 M)\left(V_{1}\right)=(1.23 M)(490 \mathrm{~mL}) \\
& V_{1}=241 \mathrm{~mL}
\end{aligned}
$$

b. 10.0.M AgNI ${ }_{3}$ is used to make 990 mL of $2,38 \mathrm{M}$ solution.
$\left.(10.0 \mathrm{M}) V_{1}\right)=(2.38 \mathrm{H})(990 \mathrm{~mL})$

$$
V_{1}=236 \mathrm{~mL}
$$

 sodium chloride at 0 C ?

$$
\frac{\mathrm{mol}^{2}}{L} \mathrm{NaCl}=29.7 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{58.44 \mathrm{~g}} \times \frac{1}{0.2000 \mathrm{~L}}=2.54 \mathrm{M}
$$

12. Use your solubility table to predict the solubility of the following solids
a. NaNO_{3}
(aq)
b. AgI
(s)
c. CuBr_{2}
(aq)
d. BaCl_{2}
(aq)
Double Replacement $\rightarrow A B+C D \rightarrow A D+C B$
13. Predict what the precipitate will be, if any, when aqueous solutions of the folloyning compounds are mixed. a. lead(ii) nitrate with potassium sulfide

$$
\underset{A}{\mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\underset{\mathrm{CD}}{\mathrm{~K}_{2} \mathrm{~S}} \rightarrow \mathrm{PbS}_{(\text {qq) }}+2 \mathrm{KNO}_{3}(\mathrm{aq)})} \text { None }
$$

$$
\begin{aligned}
& \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{CaCl}_{2} \rightarrow \mid \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\mathrm{NaCl}_{((\mathrm{qq})} \\
& \text { c. Ammonium acetate with mercury) intata Precipitate } \\
& \mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}+\mathrm{HgNO}_{3} \rightarrow \mathrm{HgCH}_{3} \mathrm{COO}_{(69)}+\mathrm{NH}_{4} \mathrm{NO}_{\text {(9) }} \\
& \text { d. Zinc nitrate with lithium hydroxide } \\
& \mathrm{Zn}_{\mathrm{n}}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{LiOH} \rightarrow 2 \mathrm{LiNO}_{3(29)}+\mathrm{Zn}_{n}(\mathrm{OH})_{2(\mathrm{~s})} \\
& \text { 14. Define the following terms: }
\end{aligned}
$$

Produces $\mathrm{H}_{3} \mathrm{O}^{+}$in solution
b. Base solution

Produces OH- in solution.
15. The following properties were observed for 5 solutions. From the properties, identify the acids and bases (some might be neither.

Solution	Conductivity	Taste	Reaction with Zinc Metal	Type of Solution
V	Yes	Sour	Gas produced	Acid
W	Yes	Bitter	None	Base
X	Yes	Salty	None	Ionic (salt)
Y	No	Sweet	None	Covalent...
Z	Yes	Sour	Gas produced	Acid

16. State the Arrhenius definition for an acid and base

Acid $\rightarrow \mathrm{H}^{+}$
Base $\rightarrow \mathrm{OH}^{-}$
17. Explain how a hydronium ion is formed in aqueous solution

Water surround H^{+}ions to make $\mathrm{H}_{3} \mathrm{O}^{+}$
18. Calculate the [OH-] in 0.050 M HCl solution
$\underset{\substack{\mathrm{OSO} 9 \mathrm{M}}}{\mathrm{HCl}} \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{0.050 \mathrm{M}}{\mathrm{H}_{3} \mathrm{O}^{+}}+\mathrm{Cl}^{-}$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \div\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
& {\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-13} \mathrm{M}}
\end{aligned}
$$

19. What is the pH of the solution in question 5

$$
\begin{aligned}
& \text { stree ph of the solution question } 5 \\
& P H=-\log (0,05 O M)=1.30
\end{aligned}
$$

20. Complete the following table:

21. Tomato juice has a pH of approximately 4.20 . Find the $\left[\mathrm{H}_{3} \mathrm{O}+\right]$, $[\mathrm{OH}-]$ and pOH of the tomato juice.
22. A solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ was prepared by adding 1.00 g into 1.00 L of water. Find the $\left[\mathrm{H}_{3} \mathrm{O}+\right]$, $[\mathrm{OH}-], \mathrm{pH}$ and pOH
$\mathrm{Ba}(\mathrm{OH})_{2}$ of the solution.
$\begin{aligned} \frac{\mathrm{mol}}{L} & =1.00 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{171.35 \mathrm{~g}} \times \frac{1}{1.00 \mathrm{~L}} \\ & =0.005841 \mathrm{M}\end{aligned}$
$\begin{array}{cc}\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+20 \mathrm{H} \\ 0.00584 \mathrm{M} & 0.0117 \mathrm{M}\end{array}$

$$
\begin{aligned}
\text { OOH } & =-\frac{0}{20.0117 M} \\
\mathrm{PH} & =14-9331.933
\end{aligned}
$$

$=0.00584$

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =10^{-12.067} \\
& =8.57 \times 10^{-13} \mathrm{M}
\end{aligned}
$$

$$
=12.067
$$

$$
\begin{aligned}
& {\left[H_{3} 0^{+}\right]=10^{-4.20} \quad \mathrm{POH}=14-4.20} \\
& {\left[\mathrm{OH}^{-}\right]=10^{9.80}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-5} \mathrm{M}} \\
& =9.80 \\
& 1.6 \times 10^{10} \mathrm{M}
\end{aligned}
$$

23. Separate samples of a solution of unknown pH turn phenolphthalein pink, indigo carmine blue and $1,3,5$ trinitrobenzene colourless. What is the pH of the solution?

Phenolphthalein >10
Indigo carmine <11.4
$1,3,5$ TAB <12
range $10-11.4$
24. Separate samples of a solution of unknown pH turn thymol blue yellow, methyl orange red and chlorophenol red. What is its pH ?
Thymol Blue 2.8-8
Methyl Orange <3.2
Chlorophenol >2.6

Chlorophend Range

$$
Y_{1.8-2.6 R}^{R}
$$

Range 2.6-3.2
ascribed below:
a. A solution of HF diluted from 100 mL of 4.5 M standard solution to a volume of 900 mL .
$(4.51)(100 \mathrm{~mL})=C_{2}(900 \mathrm{~mL})$

$$
C_{2}=0.50 \mathrm{M}
$$

$$
=0.0582 \mathrm{M}\left(\left[\mathrm{H}_{3} 0^{+}\right]\right)
$$

c. A solution of phosphoric acid diluted from 10 mL of 12.1 M solution diluted by adding 790 mL of solution.

Q polyprotic

$C_{1} V_{1}=C_{2} V_{2}$
(12.11) $(10 \mathrm{~m})=c_{2}(800 \mathrm{~m})$

$$
\begin{aligned}
\mathrm{PH} & =-\log [0.45 M] \\
& =0.34 \\
\mathrm{PH} & =14-0.34 \\
& =13.66
\end{aligned}
$$

$$
\zeta H^{-3}=10^{-13.66}
$$

$$
c_{2}=0.15 \mathrm{M}
$$

$$
=2.2 \times 10^{-14} \mathrm{M}
$$

$$
\left[\mathrm{H}_{3} 0^{+}\right]=0.45 \mathrm{M}
$$

d. A solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ created by adding 0.39 g of solid to 15.00 L of solution.

P poly parotic

$$
\begin{aligned}
& \frac{\mathrm{mol}}{\mathrm{~L}}=0.399 \times \frac{1 \mathrm{~mol}}{177.35} \times \frac{1}{15.00 \mathrm{~L}}=1.5 \times 10^{-4} \mathrm{M} \\
& {\left[\mathrm{OH}-3=3.0 \times 10^{-4} \mathrm{M}\right.} \\
& \mathrm{POH}=-\log \left(3.0 \mathrm{O} 0^{-4}\right)=3.52 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.48}=3.3 \times 10^{-11} \mathrm{M} \\
& \mathrm{PH}=14-3.52=10.48
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PH}=-\log (0.0582) \\
& {\left[\mathrm{OH} \mathrm{H}^{-}\right]=10^{-12.765}} \\
& =1.235 \\
& =1.72 \times 10^{-13} \mathrm{M} \\
& \mathrm{POH}=14-1.235 \\
& =12.765
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PH}=-\log (0.50) \quad\left[\mathrm{OH}^{-}\right]=10^{-13.70} \\
& =0.30 \\
& =2.0 \times 10^{-14} \mathrm{M} \\
& \mathrm{POH}=14-0.301 \\
& =13.70
\end{aligned}
$$

