Chemistry 20 - Unit C - pH and pOH Practice
Name:

1) Calculate the pH of each of the following solutions.
a) A solution of acetic acid has a hydronium ion concentration of 0.016 M .

$$
p H=-\log (0.016)=1.80
$$

b) A bottle of household bleach has a hydronium ion concentration of $1.0 \times 10^{-13} \mathrm{M}$.

$$
p H=-\log \left(1.0 \times 10^{-13}\right)=13.00
$$

2) Calculate the pOH of each of the following solutions.
a) A solution of sodium hydroxide has a hydroxide ion concentration of 0.105 M .

$$
\mathrm{POH}=-\log (0.105) \neq 0.979
$$

b) A solution of calcium hydroxide has a hydroxide ion concentration of $0.454 \mathrm{mmol} / \mathrm{L}$.

$$
P O H=-\log (0.000454)=3.343
$$

3) Calculate the hydronium ion concentration for each of the following pH readings.
a) 12.86
b) 5.432

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-12.86}=1.4 \times 10^{-13} \mathrm{M}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5.432}=\sqrt{3.70 \times 10^{-6} \mathrm{M}}
$$

4) Calculate the hydroxide ion concentration for each of the following pOL readings.
a) 13.92
b) 8.796

$$
{ }^{2}\left[\mathrm{OH}^{-}\right]=10^{-13.92}=1.2 \times 10^{-14} \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=10^{-8.796} \neq 1.60 \times 10^{-9} \mathrm{M}
$$

5) A soft drink was put on the market $[H+]=1.4 \times 10^{-5} \mathrm{M}$. What is its pH ?

$$
p H=-\log \left(1.4 \times 10^{-5}\right) \not 4.85
$$

6) A certain brand of beer had a hydrogen ion concentration equal to $1.9 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.
i) What is the pH of this beer?

$$
P H=-\log \left(1.9 \times 10^{-5}\right)=4.72
$$

7) A solution was made by dissolving $0.837 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}$ in 100 ml final volume. If $\mathrm{Ba}(\mathrm{OH})_{2}$ is fully broken up into its ions, what is the pOH and the pH of this solution?
8) A sodium hydroxide solution Is prepared by dissolving 6.0 g NaOHimi 1.0 L of solution. Assuming that 100% dissociation occurs, what is the pOH and the pH of this solution?

$$
\left[\mathrm{OH}^{-1}\right]=6.0 \mathrm{O} \times \frac{1 \text { mod }}{400 \mathrm{O}} \times \frac{1}{1000}=0.15 \mathrm{M}
$$

9) Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{2}\right], \mathrm{pH}$ and pOH of these solutions;

$$
\left[\mathrm{OH} 3=\frac{2+1.5 \times 10^{-4}-4 \mathrm{M}}{1+1} \quad \mathrm{POH}=-\log \left(1.5 \times 10^{-4}\right)=3.82\right.
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}=10^{-10.18} 96.7 \times 10^{-11 \mathrm{M}} \mathrm{PH}=14-\mathrm{PH}=10.18
$$

$$
\begin{aligned}
& \text { c) A solution prepared by diluting } 1.0 \mathrm{~mL} \text { of } 0.20 \mathrm{M} \mathrm{HCl} \text { to a total } \\
& C_{\text {new }}=0.20 \mathrm{M} \times \frac{0.0010 \mathrm{~L}}{5.0 \mathrm{~L}}=0.000040 \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.0 \times 10^{-5} \mathrm{M} \\
& \mathrm{PH}=-\log \left(4.0 \times 10^{-5}\right) \neq 4.40 \quad \mathrm{OH}=14-4.40=9.60\left[\mathrm{OH}^{-}\right]=10^{-9.60}=2.5 \times 10 \mathrm{~K}^{-10}
\end{aligned}
$$

$$
\begin{aligned}
& M_{B(\mathrm{OH})_{2}}=\frac{\mathrm{mol}}{\mathrm{~L}}=0.837 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{17 \mathrm{l}} 35 \mathrm{~s} \times \frac{1}{0.100 \mathrm{~L}}=0.0488 \mathrm{M}
\end{aligned}
$$

