Chemistry 20	Unit 3
Lesson 8 - Modified Arrhenius Acids and Bases	84 mins

Arrhenius Acid

$-\quad$ Has H and will produce $\mathrm{H}_{(\mathrm{aq})}^{+}$	$\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}$

Arrhenius Base

- Has OH and will produce $\mathrm{OH}_{(\mathrm{aq})}$	$\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$

Modified Arrhenius Acid

- Increases the concentration of hydronium - Changed because $\mathrm{H}+$ is really just a proton... protons can't exist for long by themselves as they are volatile. - Requires water still	$\mathrm{HCl} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$ Becomes $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}$

Modified Arrhenius Base (No change)

Strong and Weak Acids

Strong Acid	Weak Acid
- Completely gives up H^{+}	- Doesn't completely give up H^{+}
$\mathrm{HCl}_{(\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}+\mathrm{Cl}_{(\text {(aq) }}$	- Lots of examples (MOST acids actually)
Top 6 in your data booklet	$\mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{F}_{(\mathrm{aq})}^{-}$ NOTE: (ヶ means reversible...)

$\left[\mathrm{HCl}_{(\mathrm{aq)}}\right]=\left[\mathrm{HF}_{(\mathrm{aq})}\right]$

- Which will have the higher pH ?

Strong and Weak Bases

Strong Base	Weak Base
- Completely dissociates into OH^{-}(NOT necessarily dissolve well...)	- Doesn't completely produce OH^{-} $\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}$ - Generally ALL group 1 and 2 metals with OH^{-}	

$\left[\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq)}}\right]=\left[\mathrm{NH}_{3(\mathrm{aq)}}\right]$

- Which will have the higher pH ?

Brønsted-Lowry Acids and Bases

Arrhenius has a tough time explaining weak acids and bases and why they are reversible. Also some acids and bases can still be acids and bases without water.						Brønsted-Lowry Acid - A molecule that gives up PROTONS
Weak Acids reaction example						- A molecule that accepts PROTONS
$\mathrm{HF}_{(\text {(aq) }}$	$+\quad \mathrm{H}_{2} \mathrm{O}_{(1)}$	\leftrightharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq) }}$	+	F^{-}(aq)	This means ALL weak acids and bases in reverse are the opposite
Acid	Base		Conjugate Acid		Conjugate Base	$\mathrm{NH}_{3(\mathrm{aq)}}$ is a weak base, $\mathrm{NH}_{4(\mathrm{aq})}$ is a weak base
Gives up Protons	Accepts Protons		Will give up protons...		Will accept protons...	$\mathrm{HF}_{(\mathrm{aq})}$ is a weak acid, $\mathrm{F}_{(\mathrm{aq})}$ is a weak base
Conjugate means Related						This also means that $\mathrm{H}_{2} \mathrm{O}_{(1)}$ is both an acid AND a base

$\leadsto \quad$ Single H^{+}, dissociates once.
\leadsto Examples. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{HCl}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq)}}+\mathrm{Cl}_{(\mathrm{aq})}$

Polyprotic Acids
\leadsto Contains multiple H^{+}, can dissociate many times, draw curves, each step get weaker
$\leadsto \quad \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq)})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}{ }^{(\mathrm{aq})}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{-}\left(\mathrm{aq)}{ }^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{HPO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}\right.$
$\mathrm{HPO}_{4}{ }^{2-}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(1)} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}+\mathrm{PO}_{4}{ }^{3-}{ }_{(\mathrm{aq})}$

Neutralization Reactions

- Acids and bases react to form water and a neutral ionic compound (A SALT) (NOT just NaCl)
- Neutralizations are used in titrations (a chemistry lab technique) to determine a quantity of an unknown acid by neutralizing it with a base.

$\mathrm{H}_{2} \mathrm{SO}_{4(\text { an) }}+\mathrm{NaOH}_{(\text {(a) })} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(!)}+\mathrm{Na}_{2} \mathrm{SO}_{\text {(an) }}$			
Acid	Base	Water	

The Salt is generally produced by the "spectator" ions that are produced by the Acids and Bases producing $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in water.

- $\quad \mathrm{Na}$ and SO_{4} in this case are the spectators

There are other theories that do an even BETTER job of explaining observations of acids and bases and even are able to explain the existence or SUPER acids and bases... but that is for another day.

Chemistry 20 - Unit 2 - Modified Arrhenius Acids and Bases

Name:

1. Complete the following table of acids and bases. The first row has been completed as an example.

Chemical Name:	Chemical Formula:	Arrhenius Acid or Arrhenius Base:	Strong or Weak:	Products After Reaction with $\mathrm{H}_{2} \mathrm{O}_{(1)}:$
Hydrochloric acid	$\mathrm{HCl}_{(\mathrm{aq})}$	Acid	Strong	$\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq)}}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$

1. Compare and contrast strong acids with weak acids.
2. Roseletta and Merribelle obtain two samples of unknown acids of equal concentration. Explain how Roseletta and Merribelle can identify which of the two acids is stronger.
