Chemistry 20	Unit 3
Lesson 8 - Modified Arrhenius Acids and Bases	84 mins

Arrhenius Acid

- Has H and will produce $H^{+}_{(aq)}$ $HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$	
---	--

Arrhenius Base

- Has OH and will produce OH- _(aq) N	$NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$
---	---

Modified Arrhenius Acid

 Increases the concentration of hydronium Changed because H+ is really just a proton protons can't exist for long by themselves as they are volatile. Requires water still 	$\begin{split} & \text{HCI} \rightarrow \text{H}^{+}_{(\text{aq})} + \text{CI}^{-}_{(\text{aq})} \\ & \text{Becomes} \\ & \text{HCI}_{(\text{aq})} + \text{H}_2\text{O}_{(\text{i})} \rightarrow \text{H}_3\text{O}^{+}_{(\text{aq})} + \text{CI}^{-}_{(\text{aq})} \end{split}$
---	--

Modified Arrhenius Base (No change)

Strong and Weak Acids

Strong Acid	Weak Acid
- Completely gives up H ⁺	- Doesn't completely give up H⁺
$HCI_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + CI^{(aq)}$	- Lots of examples (MOST acids actually)
- Top 6 in your data booklet	$HF_{(aq)} + H_2O_{(l)} \neq H_3O_{(aq)}^{+} + F_{(aq)}^{-}$ - NOTE: (\neq means reversible)

$[\mathsf{HCI}_{(\mathsf{aq})}] = [\mathsf{HF}_{(\mathsf{aq})}]$

- Which will have the higher pH?

Strong and Weak Bases	
 Strong Base Completely dissociates into OH⁻ (NOT necessarily dissolve well) Ca(OH)_{2(aq)} → Ca²⁺_(aq) + 2OH⁻_(aq) Generally ALL group 1 and 2 metals with OH⁻ 	Weak Base - Doesn't completely produce OH^- $NH_{3(aq)} + H_2O_{(1)} \Leftrightarrow NH_4^+(aq) + OH^{(aq)}$

[Ca(OH)_{2(aq)}] = [NH_{3(aq)}] - Which will have the higher pH?

Brønsted-Lowry Acids and Bases

Arrhenius has a tough time explaining weak acids and bases and why they are reversible. Also some acids and bases can still be acids and bases without water. Weak Acids reaction example					Brønsted-Lowry Acid - A molecule that gives up PROTONS Brønsted-Lowry Base - A molecule that accepts PROTONS		
HF _(aq)	+	$H_2O_{(I)}$	÷	$\rm H_{3}O^{+}_{(aq)}$	+	$F^{-}_{(aq)}$	This means ALL weak acids and bases in reverse are the opposite
Acid		Base		Conjugate Acid		Conjugate Base	$\mathrm{NH}_{\mathrm{3(aq)}}$ is a weak base, $\mathrm{NH}_{\mathrm{4(aq)}}$ is a weak base
Gives up Protons		Accepts Protons		Will give up protons		Will accept protons	$HF_{(aq)}$ is a weak acid, $F_{(aq)}^{-}$ is a weak base
Conjugate means Related					This also means that $H_2O_{(\!)}$ is both an acid AND a base		

Monoprotic Acids

Polyprotic Acids

Neutralization Reactions

٠	Acids and bases react to form water and a neutral ionic	$H_2SO_{4(aq)}$ + NaOH _(aq) \rightarrow 2 $H_2O_{(l)}$ + Na ₂ SO _{4(aq)}					
	compound (A SALT) (NOT just NaCl)	A	Acid	Base	Water	Salt	
٠	Neutralizations are used in titrations (a chemistry lab	The Salt is ge	enerally pro	oduced by th	ne "spectator"	ions that are	
	technique) to determine a quantity of an unknown acid by	The Salt is generally produced by the "spectator" ions that are produced by the Acids and Bases producing H_3O^+ and OH^- in wa					r.
	neutralizing it with a base.	- Naa	and SO ₄ in	this case ar	e the spectate	ors	

There are other theories that do an even BETTER job of explaining observations of acids and bases and even are able to explain the existence or SUPER acids and bases... but that is for another day.

Chemistry 20 - Unit 2 - Modified Arrhenius Acids and Bases

Name:

1. Complete the following table of acids and bases. The first row has been completed as an example.

Chemical Name:	Chemical Formula:	Arrhenius Acid or Arrhenius Base:	Strong or Weak:	Products After Reaction with H ₂ O _(I) :
Hydrochloric acid	HCI _(aq)	Acid	Strong	$H_3O^+_{(aq)} + CI^{(aq)}$
Sulfuric acid				
	HI _(aq)			
Oxalic acid				
	HNO _{2(aq)}			
Potassium hydroxide				
Rubidium hydroxide				
	$CH_3COOH_{(aq)}$			
Lithium hydroxide				
	$H_3PO_{4(aq)}$			
Barium hydroxide				

1. Compare and contrast strong acids with weak acids.

2. Roseletta and Merribelle obtain two samples of unknown acids of equal concentration. Explain how Roseletta and Merribelle can identify which of the two acids is stronger.