Chemistry 20 - Unit 2 - Dilution and Distillation
Name: \qquad
You may find the following formulas useful:

$C=\frac{n}{V}$	$d=\frac{m}{V}$
$m=M n$	$C_{1} V_{1}=C_{2} V_{2}$

1. To test the hardness of water, an industrial chemist performs an analysis using 100.0 mL of a $0.250 \mathrm{~mol} / \mathrm{L}$ standard solution of ammonium oxalate. What mass of ammonium oxalate is needed to make this solution?

$$
\begin{aligned}
& \frac{0.250 \mathrm{~mol}}{1 \mathrm{~L}} \times 0.1000 \mathrm{~L}=0.0250 \mathrm{~mol} \\
& m=124.0 \mathrm{~g} \times 0.0250 \mathrm{~m} \times 3.10 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
&\left(N H_{y_{2}} O 0<C 00\right. \\
& M=3600+88.02 \\
& N H H_{2} \\
&=124.10 g_{\text {mas }}
\end{aligned}
$$

2. Calculate the mass of solid sodium hydroxide needed to make 500 mL of a $10.0 \mathrm{~mol} / \mathrm{L}$ cleaning solution.
$\mathrm{NaOH} M=40.00 \mathrm{~g} / \mathrm{mal}$

$$
\begin{aligned}
& n=\frac{10.0 \mathrm{~mol}}{1 \mathrm{~L}} \times 0.500 \mathrm{~L}=5.00 \mathrm{~mol} \\
& m=\frac{40.00 \mathrm{~g}}{1.00} \times 5.00 \mathrm{mal}=200 \mathrm{~g}
\end{aligned}
$$

3. When acidified, potassium permanganate is a lethally powerful oxidizing agent. Mr. Pruden's dog, Maggie, decides to prepare 500.0 mL of a $0.0750 \mathrm{~mol} / \mathrm{L}$ potassium permanganate
solution. What mass of potassium permanganate is required to prepare this solution?

$$
\begin{aligned}
& 1 \mathrm{~L} \times 0.500 \mathrm{~L}=0.0375 \mathrm{mal} \\
& m=0.0375 \mathrm{~mol} \times \frac{158.04 \mathrm{~g}}{1 \mathrm{~mol}}=5.93 \mathrm{~g}
\end{aligned}
$$

4. Maggie realizes that her solution is too weak, but with the help of a distillation apparatus, manages to reduce 500.0 mL of the $0.0750 \mathrm{~mol} / \mathrm{L}$ solution to a volume of 200.0 mL . What is the resulting concentration?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& \frac{(0.0750 \mathrm{~mol} / \mathrm{L}) \cdot 5000 \mathrm{~mL}}{2000 \mathrm{mh}}=0.188 \mathrm{M}
\end{aligned}
$$

5. The next step in Maggie's nefarious plan is to produce 4.00 L of a 10.0% hydrochloric acid solution, using a 36.0% stock solution. How much of the stock solution will Maggie need to use?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& \frac{(10.07)(4.000}{36.0 \%}=V_{1}
\end{aligned}
$$

6. Maggie mixes her potassium permanganate with his hydrochloric acid, but alas, the reaction does not work as desired. Undeterred, my dog decides to produce 2.00 L of $0.200 \mathrm{~mol} / \mathrm{L}$ sulfuric acid solution from a $17.8 \mathrm{~mol} / \mathrm{L}$ stock solution. How much of the stock solution is necessary?

$$
\begin{gathered}
C_{1} V_{1}=C_{2} V_{2} \\
V_{1}=\frac{0.200 \mathrm{~mol} / \mathrm{L} \times 2.00 \mathrm{~L}}{17.8 \mathrm{~mol} / \mathrm{L}}=0.0225 \mathrm{~L} \\
22.5 \mathrm{~mL}
\end{gathered}
$$

7. In a rage, Mr. Pruden kicks over Maggie's doghouse and scolds his dog for getting into his chemicals again. Afterwards, Mr. Pruden takes 5.00 mL of a $0.005000 \mathrm{~mol} / \mathrm{L} \mathrm{CuSO}_{4(\mathrm{aq})}$ solution and dilutes it to a final volume of 100.0 mL . What is the final concentration of the diluted solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& C_{2}=\frac{(5.00 \mathrm{~mL})(0.005000 \mathrm{~mol} / \mathrm{L})}{100.0 \mathrm{~mL}} \\
& C_{2}=0.000250 \mathrm{Mor} 0.250 \mathrm{mmol} / \mathrm{L}
\end{aligned}
$$

8. Maggie's antics will not stop! She seizes 50.00 mL of a $1.50 \mathrm{~mol} / \mathrm{L}$ nitric acid solution and adds 950.00 mL of water to it. What is the new concentration of nitric acid?

$$
\underbrace{\mathrm{L}}_{(1.50 \mathrm{mel})(50.00 \mathrm{~mL}} \mathrm{C}_{1}=C_{2} V_{2}
$$

9. 15.00 grams of potassium dichromate is added to water, preparing 100.00 mL of solution.
a. What is the concentration of this solution?

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{r}_{2} \mathrm{O}_{7} \\
& M=294.20 \mathrm{~g} / \mathrm{mol} \\
& \begin{array}{l}
n=15.00 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{24.20 \mathrm{l}}=0.0510_{\mathrm{mol}} \\
c=\frac{0.0510 \mathrm{~mol}}{0.10000 \mathrm{l}}=0.510 \mathrm{M}
\end{array} \\
& \text { b. If } 200.00 \mathrm{~mL} \text { of water are added to the solution, what is the resulting concentration? } \\
& \begin{array}{l}
c_{1} V_{1}=C_{1} v_{2} \\
c_{2}=\frac{(0.510 M)(10000 \mathrm{~mL})}{(300.00 \mathrm{~mL})} \neq 0.170 \mathrm{M}
\end{array}
\end{aligned}
$$

