Chemistry 20 - Unit 2 - Concentration Practice
Name:
You may find the following formulas useful:

$C=\frac{n}{V}$	$C_{v / v}=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 100 \%$
$m=M n$	$C_{w / w}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 100 \%$
$d=\frac{m}{V}$	$C_{p p m}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{6}$
$C_{p p m}=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 10^{6}$	

1. 15.0 mL of sodium chloride is added to 35.0 mL of water. What is the solution's concentration in parts per million?

$$
C_{\text {ppm }}=\frac{V_{\text {slut }}}{V_{\text {sedition }}} \times 10^{6}=\frac{11.0 \mathrm{~mL}}{50.0 \mathrm{~mL}} \times 10^{6} \neq 3.00 \times 10^{5} \mathrm{ppm}
$$

2. Mr. Pruden's dog wears a lot of jewelry. Her collar is sterling silver and has a mass of 48.0 grams. If 12.6 grams of silver are present in the collar, what is the silver's percentage concentration by weight?

$$
C_{w / w}=\frac{m_{\text {site }}}{m_{\text {stion }}} * 100 \%=\frac{12.6 \mathrm{~g}}{48.0 \mathrm{~g}} \times 100 \%=26.3 \% \mathrm{w} / \mathrm{w}
$$

3. How many liters of $1.50 \mathrm{~mol} / \mathrm{L}$ solution of magnesium hydroxide would contain 40.0 g of solute? $\mathrm{Mg}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& n=\frac{m}{M}=\frac{40.0 \mathrm{o}}{58.33 \mathrm{~g} / \mathrm{mol}}=0.68 \mathrm{~mol} \\
& \quad V=\frac{n}{C}=\frac{0.686 \mathrm{mal}}{1.50 \mathrm{~mol} / \mathrm{L}}=0.457 \mathrm{~L}
\end{aligned}
$$

4. Sodium phosphate solution is used to remove the scales at the bottom of a tea kettle.

Calculate the mass of sodium phosphate needed to make 4.00 L of a $0.500 \mathrm{~mol} / \mathrm{L}$ cleaning solution. $n=C V=0,500 M \times 4.00 \mathrm{~L}=2.00 \mathrm{~mol}$
$\left(\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$

$$
m=M_{n}=(163.94 \mathrm{~g} / \mathrm{md}) \times 2.00 \mathrm{~mol} 9328 \mathrm{~g}
$$

5. Calculate the mass of silver nitrate needed to prepare 1.00 liter of a $0.325 \mathrm{~mol} / \mathrm{L}$.

$$
\mathrm{AgNO}_{3} \quad M=169.88 \mathrm{~g} / \mathrm{mal}
$$

$$
\begin{aligned}
& n=C V=0.325 \mathrm{mal} / \mathrm{L} \times 1.00 \mathrm{~L}=0.325 \mathrm{mal} \\
& m=M_{n}=169.88 \mathrm{~g} \mathrm{mal} \times 0.32 \mathrm{smal} \\
& \\
& =55.2 \mathrm{~g}
\end{aligned}
$$

6. Mr. Pruden's dog is frighteningly intelligent and decides to prepare a brine solution for fun. She uses 15.0 grams of sodium chloride to prepare 100 mL of solution.
a. How many moles of sodium chloride were used?

$$
n=\frac{m}{M}=15.0 \mathrm{~g} \times \frac{1}{58.44 \mathrm{~g}} \neq 0.257 \mathrm{mal}
$$

b. What is the chemical amount concentration of brine in moles per litre?

$$
C=\frac{n}{V}=\frac{0.257 \mathrm{mal}}{0.100 \mathrm{~L}}=2.57 \mathrm{M}
$$

7. What is the $\%(\mathrm{w} / \mathrm{w})$ concentration of 433 ppm by weight of sodium chloride?

$$
\begin{aligned}
& 433 p p m=\frac{433}{1000000}=\frac{0.000433}{1} \times \frac{100}{100} \\
& \text { Want per cent } \\
&(100)
\end{aligned}
$$

