Chemistry 20	Unit 3
Lesson 4 - Concentration as Parts Per Million	84 mins

 $C = \frac{quantity of solute}{quantity of solution (Quantity_{solvent}+Quantity_{solute})}$

Parts Per Million

% = parts per cent (100) ppm = parts per million (1,000,000)	ppm = $\frac{1}{10^6}$
	$C_{ppm} = \frac{m_{solute}}{m_{solution}} \times 10^6$
	$C_{ppm} = \frac{V_{solute}}{V_{solution}} \times 10^6$

Examples

$$C_{ppm} = ??$$

$$m_{solute} = 0.022 g$$

$$m_{solution} = 250 g$$

$$ppm = \frac{m_{solute}}{m_{solution}} \times 10^{6}$$

$$ppm = \frac{0.022 g}{250 g} \times 10^{6} = 88 ppm$$

$$m_{solute} = \frac{(C_{ppm})(m_{solution})}{10^{6}}$$

$$m_{solute} = \frac{(0.0050)(500g)}{10^{6}} = 2.5 \times 10^{-6} g (unit will match)$$

Chemistry 20 - Unit 2 - Concentration Practice

	Name:
You may find the following formulas useful:	
$C = \frac{n}{V}$	$C_{v/v} = \frac{V_{solute}}{V_{solution}} \times 100\%$
m = Mn	$C_{w/w} = \frac{m_{solute}}{m_{solution}} \times 100\%$
$a = \frac{V}{V}$ $C_{ppm} = \frac{V_{solute}}{V_{solution}} \times 10^{6}$	$C_{ppm} = \frac{m_{solute}}{m_{solution}} \times 10^6$

- 1. 15.0 mL of sodium chloride is added to 35.0 mL of water. What is the solution's concentration in parts per million?
- 2. Mr. Pruden's dog wears a lot of jewelry. Her collar is sterling silver and has a mass of 48.0 grams. If 12.6 grams of silver are present in the collar, what is the silver's percentage concentration by weight?
- 3. How many liters of 1.50 mol/L solution of magnesium hydroxide would contain 40.0 g of solute?

4. Sodium phosphate solution is used to remove the scales at the bottom of a tea kettle. Calculate the mass of sodium phosphate needed to make 4.00 L of a 0.500 mol/L cleaning solution. 5. Calculate the mass of silver nitrate needed to prepare 1.00 liter of a 0.325 mol/L.

- 6. Mr. Pruden's dog is frighteningly intelligent and decides to prepare a brine solution for fun. She uses 15.0 grams of sodium chloride to prepare 100 mL of solution.
 - a. How many moles of sodium chloride were used?

b. What is the chemical amount concentration of brine in moles per litre?

7. What is the % (w/w) concentration of 433 ppm by weight of sodium chloride?