Chemistry 20 - Unit 2 - Concentration (AGAIN)

Name: \qquad

You may find the following formulas useful:

$$
m=M n
$$

Molar concentration = MOLARITY!

Molar concentration is the number of moles of the substance contained in 1 L of solution. The units for molarity is $\mathrm{mol} / \mathrm{L}$. The formula for concentration is:

$$
C=\frac{n}{V}
$$

$$
\begin{gathered}
C=\text { concentration in mol /L } \\
n=\text { moles } \\
V=\text { volume in Litres }
\end{gathered}
$$

Molarity has 4 different ways of showing units.

- The unit symbol for $\mathrm{mol} / \mathrm{L}$ is M
- M is stated as Molar
- Molar concentration is denoted as [...]
- $\mathrm{mol} / \mathrm{L}=\mathrm{M}=[\quad]=$ molarity

1) If a 1.0 L solution contains 2.5 mol of NaCl , what is the molar concentration?

$$
C=\frac{n}{V}=\frac{2.5 \mathrm{mdl}}{1.0 \mathrm{~L}}=2.5 \frac{\mathrm{~mol}}{\mathrm{~L}}=2.5 \mathrm{M}
$$

2) What mass of NaOH is contained in 3.50 L of 0.200 M NaOH ?

$$
\begin{aligned}
& C=\frac{n}{V} \longrightarrow n=C V=0.200 \mathrm{M} \cdot 3.50 \mathrm{~L}=0.700 \mathrm{mdl} \\
& m=M_{n}=40^{\circ} \mathrm{g} \mathrm{~mol} 10.700 \mathrm{md} \neq 28.0 \mathrm{~g}
\end{aligned}
$$

3) What is the molarity of pure sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, having a density of $1.839 \mathrm{~g} / \mathrm{mL}$?
4) What is the molarity of the CaCl_{2} in a solution made by dissolving and diluting 15.00 g of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to 500.0 mL ?

Note: When $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ dissolves in water it turns into CaCl_{2} with equal number of moles therefore $\left[\mathrm{CaCl}_{2}\right]$
$=\left[\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$ $=\left[\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$

$$
C=\frac{n}{V}=\frac{n_{\mathrm{CaCl}_{2}} \cdot 6 \mathrm{H}_{2} \mathrm{O}}{0.500 \mathrm{~L}}=\frac{0.06846 \mathrm{mal}}{0.5000 \mathrm{~L}}=0.13690 \mathrm{rr}
$$

$$
\begin{gathered}
n_{C_{C O I} \cdot 6 H_{2} 0}=\frac{m}{M}=\frac{15.00 \mathrm{~g}}{219.10 \mathrm{O} / \mathrm{mol}}=0.06846 \mathrm{~mol} \\
{\left[\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]=0.1369 \mathrm{M}} \\
\therefore\left[\left[\mathrm{CaCl}_{2}\right]=0.1369 \mathrm{M}\right.
\end{gathered}
$$

5) Find the molar concentration of each of the ions in a solution that contains 0.165 moles of aluminum chloride
in 820 mL ? (Note: Use the dissociation equation first, and use ratios for the concentration of all ions)

$$
\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-}
$$

$0.165 \mathrm{~mol} \quad 0.165 \mathrm{~mol} ~ 0.495 \mathrm{~mol}$

$$
\begin{aligned}
& {\left[\mathrm{Al}^{3+}\right]=\frac{0.165 \mathrm{md}}{0.820 \mathrm{~L}}=0.201 \mathrm{M}} \\
& {\left[\mathrm{Cl}^{-}\right]=\frac{0.495 \mathrm{mal}}{0.820 \mathrm{~L}}=0.604 \mathrm{M}}
\end{aligned}
$$

Alternate Answer to 3
You want the units $\frac{\mathrm{mol}}{\mathrm{L}}$
You have density $1.839 \mathrm{~g} / \mathrm{m}$

