Chemistry 20 - Unit 2 - Concentration
Name:

You may find the following formulas useful:

$$
\begin{aligned}
C & =\frac{n}{V} \\
m & =M n
\end{aligned}
$$

1. In moles per litre, calculate the molarity of each of the following solutions.
a. $\quad 1.50 \mathrm{~mol}$ of zinc nitrate is dissolved in 3.00 L of solution.

$$
\left[\mathrm{Zn}_{n}\left(\mathrm{NO}_{3}\right)_{2}\right]=\frac{n_{\mathrm{Zn}^{2}\left(\mathrm{NO}_{3}\right)}}{V}=\frac{1.50 \mathrm{~mol}}{3.00 \mathrm{~L}}=0.500 \mathrm{M}
$$

b. 2.25 mol of elemental oxygen is dissolved in 5.00 L of solution.

$$
C \frac{2}{2}=\frac{0_{2}}{V}=\frac{2.25001}{5.000}=0.450 \mathrm{mdk} / 0.450 \mathrm{M}
$$

c. $3.25 \times 10^{-3} \mathrm{kmol}$ of barium sulfide is dissolved in 1.25 L of solution.

$$
\left[\mathrm{BaS}_{\text {(aq }}\right]=\frac{n_{\mathrm{BaS}}}{V}=\frac{3.25 \mathrm{~mol}}{1.25 \mathrm{~L}}-2.60 \mathrm{M}
$$

d. $4.56 \times 10^{3} \mathrm{mmol}$ of sodium is dissolved in $3.25 \times 10^{9} \mathrm{~nL}$ of solution.

$$
[\mathrm{Na}]=\frac{n_{N_{a}}}{V}=\frac{4.56 \mathrm{~mol}}{3.25 \mathrm{~L}}=1.40 \mathrm{M}
$$

e. 40.00 grams of sodium hydroxide is dissolved in 450.0 mL of solution. $n=\frac{m}{M}=\frac{400 \mathrm{~g}}{40.00 \mathrm{~g} / \mathrm{mol}}=1.000 \mathrm{md}$
$\quad[\mathrm{NaOH}]=\frac{n_{\mathrm{N}_{0} O H}}{V}=\frac{1.000 \mathrm{~mol}}{0.4500 \mathrm{~L}}=2.222 \mathrm{M}$
f. $\quad 159.00$ grams of iron (III) oxide is dissolved in 20.0 L of solution.

$$
\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]=\frac{n_{\mathrm{e}_{2}, \mathrm{O}_{3}}}{L}=\frac{0.9956 \mathrm{md}}{20.0 \mathrm{~L}}=0.04978 \mathrm{M}
$$

g. 8.75×10^{4} milligrams of calcium chloride is dissolved in $4.50 \times 10^{-4} \mathrm{~kL}$ of solution. $n=\frac{87.5 \mathrm{~g}}{110.98 \mathrm{~g} / \mathrm{mol}}=0.788 \mathrm{~mol}$
2. In moles, calculate the chemical amount of solute in each of the following solutions. Following that, calculate the mass of solute in grams.
a. A 1.50 M zinc nitrate solution has a volume of 4.50 L .

$$
n=C V=1.50 \mathrm{M} \times 4.50 \mathrm{~L}=6.75 \mathrm{~mol}
$$

b. A 2.45 M calcium chloride solution has a volume of 32.0 L .

$$
n=C V=2.45 \mathrm{M} \times 32.0 \mathrm{~L}=78.4 \mathrm{~mol}
$$

c. A $6.26 \mathrm{mmol} / \mathrm{L}$ ammonium oxalate solution has a volume of 3500 mL .

$$
n=C V=62 \times 10^{-3} \mathrm{M} \times 3.50 \alpha=0.0219 \mathrm{md}
$$

d. A $4.54 \mathrm{kmol} / \mathrm{L}$ hydrochloric acid $\left(\mathrm{HCl}_{(\text {aq })}\right)$ solution has a volume of $2.65 \times 10^{-3} \mathrm{~kL}$.

$$
n=C V=4.54 \times 10^{3} \mathrm{M} \times 2.65 \mathrm{~L}=1.20 \times 10^{4} \mathrm{mod}
$$

e. A $3.28 \times 10^{10} \mathrm{nmol} / \mathrm{L}$ sodium hydroxide solution has a volume of $5.6 \times 10^{12} \mathrm{~nL}$.

$$
32.8 \mathrm{M} \times 5.6 \times 10^{3} \mathrm{~L}=1.8 \times 10^{5} \mathrm{~mol}
$$

$$
0.455 \mathrm{M} \times 0.068 \mathrm{~L}=0.031 \mathrm{md}
$$

g. A $7.5 \times 10^{-7} \mathrm{Mmol} / \mathrm{L}$ vanadium (V) nitrite solution e of $6.78 \times 10^{-13} \mathrm{GL}$.

$$
0.75 M \times 6.78 \times 10^{-4} L=5.1 \times 10^{-4} \mathrm{~mol}
$$

3. In litres, calculate the volume of each of the following solutions.
a. $\quad 1.50 \mathrm{M}$ zirconium nitrate solution has 12.0 mol of solute.

$$
V=\frac{n}{C}=\frac{12.0 \mathrm{md}}{1.50 \mathrm{M}}=8.00 \mathrm{~L}
$$

b. 3.25 M barium sulfide solution has $1.54 \times 10^{-4} \mathrm{kmol}$ of solute.

$$
V=\frac{n}{C}=\frac{0.154 \mathrm{~mol}}{3.25 M}=0.0474 \mathrm{~L}=47.4 \mathrm{~mL}
$$

c. $5.50 \mathrm{mmol} / \mathrm{L}$ ammonium hydroxide solution has $4.5 \times 10^{4} \mathrm{mmol}$ of solute.

$$
\frac{45 \mathrm{~mol}}{0.00550 \mathrm{M}}=8.18 \times 10^{3} \mathrm{~L}=8.18 \mathrm{~kL}
$$

d. A $6.70 \times 10^{6} \mathrm{nmol} / \mathrm{L}$ rubidium selenide solution has $3.20 \times 10^{-5} \mathrm{Mg}$ of solute. $n=\frac{m}{M}=\frac{32.0 \mathrm{~g}}{R b_{2}}=0.128 \mathrm{mel}$

$$
\begin{aligned}
& \frac{0.128 \mathrm{mal}}{0.00670 \mathrm{M}}=19.1 \mathrm{~L} \\
& \text { e. A } 8.5 \mathrm{M} \text { nitric acid }\left(\mathrm{HNO}_{3(\mathrm{aq})}\right) \text { solution has } 7.85 \times 10^{-8} \mathrm{Gg} \text { of solute. } \\
& \frac{1.25 \mathrm{~mol}}{8.5 \mathrm{M}}=0.147 \mathrm{~L}=147 \mathrm{~mL} \\
& M=\frac{349.90 \mathrm{~g} \text { ged }}{} \\
& n=\frac{78.5 \mathrm{~g}}{63.02 \mathrm{gmad}}=1.25 \mathrm{mal}
\end{aligned}
$$

