Chemistry 20	Unit 3
Lesson 2 - Concentration	84 mins

What is Concentration?

- Comparison of amount of solute to amount of solution
\%, ppm, mol/L

More concentrated
(More Solute in the same amount of solvent)

Molar Concentration (mol/L)

Also known as:

- Amount concentration
- Molarity
$C=\frac{n}{V}$
C $=$ concentration ($\mathrm{mol} / \mathrm{L}$)
$n=$ moles (mol)
$V=$ volume (L)
Units:

$$
\mathrm{mol} / \mathrm{L}, \mathrm{M},[\mathrm{l}
$$

The unit M is NOT the same as the M used to represent molar mass in $\mathrm{m}=\mathrm{Mn}$

Eg.

$$
\begin{aligned}
& n=25.0 \mathrm{~mol} \\
& V=800 \mathrm{~L} \\
& C=\frac{25.0 \mathrm{~mol}}{800 \mathrm{~L}}=0.0313 \mathrm{~mol} / \mathrm{L}(\mathrm{M})
\end{aligned}
$$

Eg.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3(a q)}
$$

$$
\begin{array}{l|l}
V=2500 m L=2.500 L & C=\frac{n}{V}
\end{array}
$$

$m=800.80 \mathrm{~g}$
$n=\frac{m}{M}=\frac{800.80 \mathrm{~g}}{2(14.01)+4(1.01)+3(16.00)}$

$$
C=\frac{10.00 \mathrm{~mol}}{2.500 \mathrm{~L}}
$$

$$
C=4.001 \mathrm{~mol} / \mathrm{L}
$$

$$
n=10.00 \mathrm{~mol}
$$

$$
\left[\mathrm{NH}_{4} \mathrm{NO}_{3(a q)}\right]=4.001 \mathrm{M}
$$

Eg.

$$
\begin{array}{l|l}
M=25.0 \mathrm{~g} / \mathrm{mol} & C=\frac{n}{V} \\
m=150 \mathrm{~g} & C \times V=\frac{n}{V} \times V \\
C=3.50 \mathrm{M} & C V \div C=n \div C \\
V=?(L) & V=\frac{n}{C} \\
n=\frac{150 \mathrm{~g}}{25.0 \mathrm{~g} / \mathrm{mol}} & V=\frac{6.00 \mathrm{~mol}}{3.50 \mathrm{~mol} / \mathrm{L}} \\
n=6.00 \mathrm{~mol} & V=1.71 \mathrm{~L} \\
\hline
\end{array}
$$

Chemistry 20 - Unit 2 - Concentration

Name: \qquad

You may find the following formulas useful:

$$
\begin{aligned}
& C=\frac{n}{V} \\
& m=M n
\end{aligned}
$$

1. In moles per litre, calculate the molarity of each of the following solutions.
a. $\quad 1.50 \mathrm{~mol}$ of zinc nitrate is dissolved in 3.00 L of solution.
b. 2.25 mol of elemental oxygen is dissolved in 5.00 L of solution.
c. $3.25 \times 10^{-3} \mathrm{kmol}$ of barium sulfide is dissolved in 1.25 L of solution.
d. $4.56 \times 10^{3} \mathrm{mmol}$ of sodium is dissolved in $3.25 \times 10^{9} \mathrm{~nL}$ of solution.
e. 40.00 grams of sodium hydroxide is dissolved in 450.0 mL of solution.
f. $\quad 159.00$ grams of iron (III) oxide is dissolved in 20.0 L of solution.
g. 8.75×10^{4} milligrams of calcium chloride is dissolved in $4.50 \times 10^{-4} \mathrm{~kL}$ of solution.
2. In moles, calculate the chemical amount of solute in each of the following solutions. Following that, calculate the mass of solute in grams.
a. A 1.50 M zinc nitrate solution has a volume of 4.50 L .
b. A 2.45 M calcium chloride solution has a volume of 32.0 L .
c. A $6.26 \mathrm{mmol} / \mathrm{L}$ ammonium oxalate solution has a volume of 3500 mL .
d. A $4.54 \mathrm{kmol} / \mathrm{L}$ hydrochloric acid $\left(\mathrm{HCl}_{(\mathrm{aq})}\right)$ solution has a volume of $2.65 \times 10^{-3} \mathrm{~kL}$.
e. A $3.28 \times 10^{10} \mathrm{nmol} / \mathrm{L}$ sodium hydroxide solution has a volume of $5.6 \times 10^{12} \mathrm{~nL}$.
f. A $4.55 \times 10^{-10} \mathrm{Gmol} / \mathrm{L}$ manganese (VII) oxide solution has a volume of $6.8 \times 10^{-8} \mathrm{ML}$.
g. $\mathrm{A} 7.5 \times 10^{-7} \mathrm{Mmol} / \mathrm{L}$ vanadium (V) nitrite solution has a volume of $6.78 \times 10^{-13} \mathrm{GL}$.
3. In litres, calculate the volume of each of the following solutions.
a. $\quad 1.50 \mathrm{M}$ zirconium nitrate solution has 12.0 mol of solute.
b. 3.25 M barium sulfide solution has $1.54 \times 10^{-4} \mathrm{kmol}$ of solute.
c. $5.50 \mathrm{mmol} / \mathrm{L}$ ammonium hydroxide solution has $4.5 \times 10^{4} \mathrm{mmol}$ of solute.
d. $A 6.70 \times 10^{6} \mathrm{nmol} / \mathrm{L}$ rubidium selenide solution has $3.20 \times 10^{-5} \mathrm{Mg}$ of solute.
e. A 8.5 M nitric acid $\left(\mathrm{HNO}_{3(\mathrm{qq})}\right)$ solution has $7.85 \times 10^{-8} \mathrm{Gg}$ of solute.
