UNIT B: Gas Laws - Review Booklet

1) At a pressure of 95.0 kPa a sample of gas has a volume of 415.0 mL . What is the volume of the gas at 110 kPa ?

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(95.0 \mathrm{KPa})(415.0 \mathrm{~mL})}{(110 \mathrm{kPa})}=358 \mathrm{~mL}
\end{aligned}
$$

2) A sample of oxygen has a volume of 15 . OL at 125 kPa . What will the volume of the oxygen gas be at a pressure of 75 kPa ?

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(125 \mathrm{kPa})(15.0 \mathrm{~L})}{(75 \mathrm{kaa})}=25 \mathrm{~L}
\end{aligned}
$$

3) A sample of gas has a volume of 1.73 L at a pressure of 860 mmHg . What must the pressure be on this sample for the volume to change to 2.40 L ?

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{(860 \mathrm{mmHg})(1.73 \mathrm{~L})}{(2.40)}=620 \mathrm{mmH} \mathrm{H}_{\mathrm{g}} \\
& \begin{aligned}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad V_{2}=\frac{V_{1} T_{2}}{T_{1}}=\frac{(315 \mathrm{~mL})(308 \mathrm{KK})}{(273.1584}=3.6 \times 1 \mathrm{l}_{\mathrm{mL}}^{2} \\
=0.36 \mathrm{~L}
\end{aligned}
\end{aligned}
$$

4) A sample of oxygen has a volume of 315 ml at STP. What is the volume of the gas at $35^{\circ} \mathrm{C}$?
5) At $23^{\circ} \mathrm{C}$, a sample of hydrogen gas has a volume of 29.00 L . To what temperature must this gas be heated to change the volume to 64.00 L ?

$$
T_{2}=\frac{T_{1} V_{2}}{V_{1}}=\frac{(296 \mathrm{k})(64.00 \mathrm{~L})}{29.00 \mathrm{~L}} \quad 6.653 \mathrm{~K}
$$

6) 27.5 L of chlorine gas at 109 kPa and $23^{\circ} \mathrm{C}$ is changed to 84.0 kPa and $40.0^{\circ} \mathrm{C}$. What is the new volume?

$$
\begin{aligned}
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}} & =\frac{(109)(27.5)(313.2)}{(296)(84.03)} \\
& =38 \mathrm{~L}
\end{aligned}
$$

7) A gas sample has a volume of 35.0 L at 790 mmHg and $22.0^{\circ} \mathrm{C}$, What is the volume at $\operatorname{STP}(746$

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{(790)(35.0)(273.5)}{(295.15)(760.00)}=33.7 \mathrm{~L}
$$

8) A sample of fluorine gas with a volume of 45.0 L at STP is changed to 117 kPa and $30.0^{\circ} \mathrm{C}$. What is the new volume of the gas?

$$
\begin{aligned}
& V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{(10.325)(4.5)(303.15)}{(213,5)(117)} \\
&
\end{aligned}
$$

9) Find the molar mass of the following molecules:
${ }^{\text {d) }} \mathrm{A}_{41}\left\{0, \mathrm{~S}_{3}\right.$

$$
M=2(26,98)+3(3(2,07)+2(16)
$$

$$
=342.17 \mathrm{gmol}
$$

$$
M=3(14.01)+12(1.01)+30.97+4(160)
$$

$$
\begin{aligned}
M & =(2072)+(3.07)+4(10) \\
& =303.27 \mathrm{gmol}
\end{aligned}
$$

$$
M=149.12 \mathrm{~g} \mathrm{~mol}
$$

10) Find the molar mass of the following molecules:
11) Calculate the number of moles of the following:

$$
n=\frac{m}{M}=\frac{115 \mathrm{~g}}{95.62 \mathrm{~g} / \mathrm{mol}}=1.20 \mathrm{~mol}
$$

$$
\begin{array}{r}
n=\frac{m}{M}=\frac{4.046 \mathrm{~g}}{196.97 \mathrm{~g} / \mathrm{mol}}=0.02054 \mathrm{~mol} \\
\\
=20.54 \mathrm{mmol}
\end{array}
$$

$$
\begin{aligned}
& \text { a) } 0.705 \text { mol of CO } 2 \text { at STP } \\
& M=12.01+2(16) \\
& =44.01 \mathrm{~g} / \mathrm{mol} \\
& M=58.69+2(16)+2(1.01) \\
& =92.71 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& M=\left(\begin{array}{l}
\text { a) } 14.01)+3(16.00)=6 \\
62.01 \mathrm{~g} / \mathrm{mol} \\
\hline
\end{array}\right. \\
& M=2((0) 4) 4(1.01)+2\left(10=60.06 g_{\text {mad }}\right.
\end{aligned}
$$

13) What is the molar mass of 0.475 g of an ideal gas that has a volume of 450 ml at 175 kPa and $15.0^{\circ} \mathrm{C}$.
$P V=n R T$

$$
n=\frac{P V}{R T}=\frac{(17 \mathrm{SkPa})(0.4501)}{(8.314)(288.15 \mathrm{~K})}=0.0329 \mathrm{~mol} \quad M=\frac{m}{n}=\frac{0.475 \mathrm{~g}}{0.0329 \mathrm{~mol}}
$$

$$
=14.5 \mathrm{~g} / \mathrm{mol}
$$

14) Explain how you change Celsius to Kelvin.

Add 273.15 to any Celsius temperature to get Kelvin.
15) Explain the difference between SATP and STP.

$$
\begin{array}{lc}
\text { SATP } & \text { STD } \\
100.00 \mathrm{kPa} & 101.32 \mathrm{KPa} \\
25.00^{\circ} \mathrm{C} & 0.00^{\circ} \mathrm{C}
\end{array}
$$

16) Describe the difference between real and ideal gases

Real Gases	Ideal Gases
- each molecule has volume	- move in straight lines.
- elastic collisions	- Volume can be "O"
- each molecule has mass.	- Can't change state.
	- no LDFs (attractive forces)

17) Explain the Kinetic Molecular Theory and its applications to this unit.

* Every thing is made of molecules
* Molecules are always moving
* There are forces of attraction and repulsion between molecules.
Gas haws are directly influenced by the KMT. We use ideal gases to see the effect of changes applied to a system.

$$
\begin{aligned}
& P V=n R T \quad V=\frac{n R T}{P}=\frac{(0.497 \mathrm{me})(8.314)(294.150 \mathrm{k})}{134.000 \mathrm{kPa}} \\
& n=\frac{m}{M}=\frac{28.897_{a}}{58.14 \mathrm{gmol}} \quad V=9.0709 \mathrm{~L}
\end{aligned}
$$

