Chemistry 20	Unit 2
Lesson 9 - Law of Combined Volumes	84 mins

Density

- The measure of how tightly packed particles are If the same number of moles SF_{6} and H_{2} gases were in identical containers, Which would have a higher density? $\begin{gathered} P V=n R T \\ n=\frac{m}{M} \quad \begin{array}{c} P V \div V=\frac{m R T}{M} \div V \\ P=\frac{m}{V} \times \frac{R T}{M} \\ d=\frac{m}{V} \\ P=\frac{d R T}{M} \end{array} \end{gathered}$	$\begin{aligned} d & =\frac{m}{V} \\ d & =\text { density }(g / L) \\ m & =\text { mass }(g) \\ V & =\operatorname{volume}(L) \end{aligned}$ SF_{6} - Higher molar mass Ex. What is the density of $\mathrm{N}_{2(\mathrm{~g})}$ at a pressure of 1520.00 mmHg , temperature of 400.0 K ? $\begin{gathered} P=\frac{d R T}{M} \\ d=\frac{M P}{R T} \\ P=1520.00 \mathrm{mmHg} \times \frac{101.325 \mathrm{kPa}}{760.00 \mathrm{mmHg}}=202.650 \mathrm{kPa} \\ T=400.0 \mathrm{~K} \\ M=(14.01 \mathrm{~g} / \mathrm{mol}) \times 2=28.02 \mathrm{~g} / \mathrm{mol} \\ d=\frac{(28.02 \mathrm{~g} / \mathrm{mol})(202.650 \mathrm{kPa})}{\left(8.314 \frac{L \cdot \mathrm{kPa}}{K \cdot \mathrm{~mol})}(400.0 \mathrm{~K})\right.} \\ d=1.707 \mathrm{~g} / \mathrm{L} \end{gathered}$

Law of Combining Volumes (pg. 164)

When measured at the same temperature and pressure, volumes of gaseous reactants and products are always in simple ratios of whole numbers	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
1.00 mol of O_{2} will occupy the same volume as 1.00 mol	
of N_{2}	$2: 1: 2$
All gases under the same temperature and pressure (acting like ideal gases) will occupy the same volume if they have the same amount of moles. (Avogadro's Theory)	Ideal gas law states that type of gas doesn't matter just moles.. therefore

$\begin{gathered} \mathrm{S}_{8}+(8) \mathrm{O}_{2} \rightarrow(8) \mathrm{So}_{2} \\ 1: 8: 8 \end{gathered}$ If you produced 4 L of SO_{2} how much S_{8} was used? (Unit conversions.... Sig figs only from original) $4 \mathrm{~L} \text { of } \mathrm{SO}_{2} \times \frac{\left.1 S_{8} \text { (what you want }\right)}{8 S O_{2}(\text { what you have })}=0.5 \mathrm{~L}$	4.0 L of O_{2} was used in the combustion of methanol. How much CO_{2} was produced? $\begin{gathered} (2) \mathrm{CH}_{3} \mathrm{OH}+(3) \mathrm{O}_{2} \rightarrow(2) \mathrm{CO}_{2}+(4) \mathrm{H}_{2} \mathrm{O} \\ 2: 3: 2: 4 \\ 4 \mathrm{~L}_{\text {of }} \mathrm{O}_{2} \times \frac{2 \mathrm{CO}_{2}(\text { what you want })}{3 \mathrm{O}_{2}(\text { what you have })}=5.3 \mathrm{~L} \end{gathered}$

Increasing Solubility for Solids and Gases in Liquids (Ch. 4)

Solids	Gases		
-	Increase T (more motion) (collisions)		
-	$\mathrm{P}_{\text {ext }}$ Ineffective	\quad	Decrease T (Calms gas down) (lease collisions)
:---			

Pg. 181 (1-21)

Chemistry 20 - Unit 2 Law of Combined

Gases

Name: \qquad

1. Butane, $\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}$, is highly valued as a readily available hydrocarbon that can be used in a variety of applications, including household lighters.
a. Write a balanced chemical equation, complete with state subscripts, detailing the complete combustion of butane.
b. If 3.0 L of butane are consumed in this reaction, what volume of carbon dioxide is produced?
2. Gaseous hydrogen chloride, $\mathrm{HCl}_{(\mathrm{g})}$, is often used to prepare hydrochloric acid for use in laboratory and industrial settings.
a. Write a balanced chemical equation, complete with state subscripts, detailing the formation of hydrogen chloride from its elements.

Chemistry 20 - Unit 2 Law of Combined

Gases

Name: \qquad

1. Butane, $\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}$, is highly valued as a readily available hydrocarbon that can be used in a variety of applications, including household lighters.
a. Write a balanced chemical equation, complete with state subscripts, detailing the complete combustion of butane.
b. If 3.0 L of butane are consumed in this reaction, what volume of carbon dioxide is produced?
2. Gaseous hydrogen chloride, $\mathrm{HCl}_{(\mathrm{g})}$, is often used to prepare hydrochloric acid for use in laboratory and industrial settings.
c. Write a balanced chemical equation, complete with state subscripts, detailing the formation of hydrogen chloride from its elements.
d. If 1.5 mol of hydrogen are consumed in this reaction, how many mol of hydrogen chloride are produced?
3. The Fritz-Haber process was discovered in the early $20^{\text {th }}$ century and revolutionized agriculture by allowing the mass production of ammonia, $\mathrm{NH}_{3(\mathrm{~g})}$, to take place.
a. Write a balanced chemical equation, complete with state subscripts, detailing the formation of ammonia from its elements.
b. If 4.0 mL of nitrogen are consumed in this reaction, what volume of ammonia is produced in litres?
4. Gas barbeques burn propane, $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$, using oxygen from the air.
a. Write a balanced chemical equation, complete with state subscripts, detailing the complete combustion of propane.
b. If 5.00 L of propane are burned, what volume of carbon dioxide is produced in millilitres?
5. The Fritz-Haber process was discovered in the early $20^{\text {th }}$ century and revolutionized agriculture by allowing the mass production of ammonia, $\mathrm{NH}_{3(\mathrm{~g})}$, to take place.
c. Write a balanced chemical equation, complete with state subscripts, detailing the formation of ammonia from its elements.
d. If 4.0 mL of nitrogen are consumed in this reaction, what volume of ammonia is produced in litres?
6. Gas barbeques burn propane, $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$, using oxygen from the air.
c. Write a balanced chemical equation, complete with state subscripts, detailing the complete combustion of propane.
d. If 5.00 L of propane are burned, what volume of carbon dioxide is produced in millilitres?
