Chemistry 20	Unit 2
Lesson $10-$ Review	84 mins

Gas Laws

Boyle's Law - Constant Temperature	$\begin{gathered} P_{1} V_{1}=P_{2} V_{2} \\ \uparrow P=\downarrow V \\ \uparrow V=\downarrow P \end{gathered}$
Charles' Law - Constant Pressure	$\begin{aligned} & \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\ & \uparrow T=\uparrow V \\ & \downarrow T=\downarrow V \end{aligned}$
Guy Lussac's Law - Constant Volume	$\begin{aligned} & \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\ & \uparrow T=\uparrow P \\ & \downarrow T=\downarrow P \end{aligned}$
Combined Gas Law	$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Ideal Gas Law	$P V=n R T$

Ideal Gases

Ideal Gases

- Each molecule takes up no space, volume of each molecule can be described as 0 .
- Don't change state. Are gases from OK to 1000K and up...
- NO intermolecular forces

Real Gases

- Each molecule takes up space, each molecule has a defined volume, albeit small.
- Molecules have intermolecular forces (LDFs mostly)

Real gases will ask like ideal gases at high temperatures and low pressures.
Law of Combined Volumes

$\mathrm{N}_{2}+(3) \mathrm{H}_{2} \rightarrow(2) \mathrm{NH}_{3}$	$1: 3: 2$ If you have 12 L of H_{2} what is the volume of NH_{3} produced if N_{2} is in excess, (ie WAY more then there is $\left.\mathrm{H}_{2}\right)$ 12 L of $\mathrm{H}_{2} \times \frac{2 \text { of } \mathrm{NH} 3}{3 \text { of } \mathrm{N} 2}=8.0 \mathrm{~L}$ of NH_{3}

