Chemistry 20	Unit 2
Lesson 10 - Review	84 mins

Gas Laws

Boyle's Law - Constant Temperature	$P_{1}V_{1} = P_{2}V_{2}$ $\uparrow P = \downarrow V$ $\uparrow V = \downarrow P$
Charles' Law - Constant Pressure	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\uparrow T = \uparrow V$ $\downarrow T = \downarrow V$
Guy Lussac's Law - Constant Volume	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $\uparrow T = \uparrow P$ $\downarrow T = \downarrow P$
Combined Gas Law	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
Ideal Gas Law	PV = nRT

Ideal Gases

 Ideal Gases Each molecule takes up no space, volume of each molecule can be described as 0. Don't change state. Are gases from 0K to 1000K and up NO intermolecular forces 	 Real Gases Each molecule takes up space, each molecule has a defined volume, albeit small. Molecules have intermolecular forces (LDFs mostly)
---	---

Real gases will ask like ideal gases at high temperatures and low pressures.

Law of Combined Volumes

$N_2 + (3)H_2 \rightarrow (2)NH_3$	1:3:2
	If you have 12 L of H_2 what is the volume of NH_3
 Similar to unit conversation 	produced if N ₂ is in excess, (ie WAY more then there is
	H ₂)
	12 L of H ₂ x $\frac{2 \text{ of } NH3}{3 \text{ of } N2}$ = 8.0 L of NH ₃