Chemistry 20	Unit 2
Lesson 8 - Ideal Gas Law	84 mins

Ideal Gas Law

Real Gas	Ideal Gas
$-\quad$ Have Mass	- Have no (point) mass
-	Have forces of Attraction
-	Move in curved lines
$-\quad$ Have inelastic collisions	$-\quad$ Move in forces of Attraction
$-\quad$ Have perfectly elastic collisions	

The ideal gas law is the equation of state of a hypothetical ideal gas. It is a good approximation to the behaviour of many gases under many conditions, although it has several limitations. It was first stated by Emile Clapeyron in 1834 as a combination of Boyle's law and Charles's law and Avogadro's Hypothesis.

Avogadro and Moles

6.02×10^{23} molecules $=1$ mole	Example: Moles of $\mathrm{CH}_{3} \mathrm{OH}$ in 0.250 g $m=M n$ $n=m / M=(0.250 \mathrm{~g}) \times(1 \mathrm{~mol} / 32.05 \mathrm{~g})=0.00780 \mathrm{moles}$ $=7.80 \times 10^{-3}$ moles or 7.80 mmol

Formula

At the same temperature and pressure, the same

Applications:

- Hot Air Balloon
- Lungs
number of moles will occupy the same volume of space.

Example:
Moles of $\mathrm{CH}_{3} \mathrm{OH}$ in 0.250 g
$n=m / M=(0.250 \mathrm{~g}) \times(1 \mathrm{~mol} / 32.05 \mathrm{~g})=0.00780$ moles
$=7.80 \times 10^{-3}$ moles or 7.80 mmol
$P V=n R T$
$R=$ the ideal gas CONSTANT
GENERALLY: 8.31451 LkPa/molK

Can be:

8.31451 J/molK
0.0820578 Latm $/ \mathrm{mol} K$
62.364 LmmHg/molK

Chemistry 20 - Unit 2 - Ideal Gas Law

Name: \qquad
You may find the following formulas and constants useful:

$$
P V=n R T
$$

$760.000 \mathrm{mmHg}=101.325 \mathrm{kPa}=1.00000 \mathrm{~atm}$
$1000 \mathrm{~mL}=1.000 \mathrm{~L}$
$R=8.31451 \mathrm{LkPa}$ a/molK $\quad \leftarrow \quad$ NOTE UNITS
$m=M n \quad d=\frac{m}{V}$

1. What is the volume of 2.50 mol of methane gas $\left(\mathrm{CH}_{4}\right)$ at 25.0 C and 95.00 kPa ?
2. What is the mass of 3302.94 mL of carbon dioxide at 30.0 C and 194 kPa ?
3. What is the volume of 33.25 g of butane gas $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ at -253.99 C and 10.934 kPa ?
4. To what temperature must 23.840 g of hydrogen gas be heated at 120.00 kPa to occupy a volume of 345 L ?
5. What is the mass of 39.88 L of oxygen gas at 39.84 C and 93.48 kPa ?
6. What is the mass of 210.0 mL of gas assuming it is oxygen at SATP?
7. What is the molar mass of 214 g of gas, requiring a volume of 19.03 L at STP?
8. If a steel cylinder with a volume of 1.50 L containers 10.0 moles of oxygen, under what pressure is the oxygen, if the temperature is 27.0 C ?
9. A gas was found to have a density of $1.76 \mathrm{mg} / \mathrm{L}$ at 24.0 C and a pressure of 98.8 kPa . What is its molecular mass? (Reminder: $d=\frac{m}{V}$)
10. How many millilitres of nitrogen, N_{2}, would have to be collected at 99.19 kPa and 28 C to have a sample containing 0.015 moles of N_{2} ?
11. The pressure exerted on a diver by the water increases by about 100 kPa for every 10 m of depth. A scuba diver uses air at the rate of $8 \mathrm{~L} / \mathrm{min}$ at a depth of 10 m where the pressure is 200 kPa (100 kPa due to the atmosphere and 100 kPa due to the water pressure) and a temperature of 8 C . If the diver's 10 L air tank is filled to a pressure of $2.1 \times 10^{4} \mathrm{kPa}$ at a dockside temperature of 32 C , how long can the diver remain safely submerged?
12. You want to send chlorine gas, Cl_{2}, safely from Edmonton to LLB. Chlorine gas is very poisonous and corrosive. You have a 500 L truck cylinder that will withstand a pressure of 100 atm . The cylinder will be kept at 2.00 C throughout the trip. How many moles of chlorine gas can you safely ship?

Chemistry 20 - Unit 2 - Ideal Gas Law HARD

Name: \qquad
You may find the following formulas and constants useful:

$$
\begin{gathered}
P V=n R T \\
760.000 \mathrm{mmHg}=101.325 \mathrm{kPa}=1.00000 \mathrm{~atm} \\
1000 \mathrm{~mL}=1.000 \mathrm{~L} \\
R=8.31451 \mathrm{LkPa} / \mathrm{molK} \quad \leftarrow \quad \text { NOTE UNITS } \\
m=M n \quad d=\frac{m}{V}
\end{gathered}
$$

1. A mixture of nitrogen and neon gases contains equal moles of each gas and has a total mass of 10.0 g. What is the density of this gas mixture at 500 K and 15.0 atm ? Assume ideal gas behavior.
2. 20.0 g each of helium and an unknown diatomic gas are combined in a $1500 . \mathrm{mL}$ container. If the temperature is 298 K , and the pressure inside is 86.11 atm , what is the unknown gas?
3. Three 1.00 L flasks at $25.0^{\circ} \mathrm{C}$ and 1013 hPa pressure contain: CH_{4} (flask A), CO_{2} (flask B) and NH_{3} (flask C). Which flask (or none) contains 0.041 mol of gas?

Chemistry 20 - Unit 2 - Ideal Gas Law HARD

Name:
You may find the following formulas and constants useful:

$$
\begin{gathered}
P V=n R T \\
760.000 \mathrm{mmHg}=101.325 \mathrm{kPa}=1.00000 \mathrm{~atm} \\
1000 \mathrm{~mL}=1.000 \mathrm{~L} \\
R=8.31451 \mathrm{LkPa} / \mathrm{molK} \quad \leftarrow \quad \text { NOTE UNITS } \\
m=M n \quad d=\frac{m}{V}
\end{gathered}
$$

1. A mixture of nitrogen and neon gases contains equal moles of each gas and has a total mass of 10.0 g. What is the density of this gas mixture at 500 K and 15.0 atm ? Assume ideal gas behavior.
2. 20.0 g each of helium and an unknown diatomic gas are combined in a $1500 . \mathrm{mL}$ container. If the temperature is 298 K , and the pressure inside is 86.11 atm , what is the unknown gas?
3. Three 1.00 L flasks at $25.0^{\circ} \mathrm{C}$ and 1013 hPa pressure contain: CH_{4} (flask A), CO_{2} (flask B) and NH_{3} (flask C). Which flask (or none) contains 0.041 mol of gas?
