Chemistry 20 - Unit 2 - Combined Gas Law
Name: \qquad

You may find the following formulas and constants useful:

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
760.000 \mathrm{mmHg}=101.325 \mathrm{kPa}=1.00000 \mathrm{~atm} \\
1000 \mathrm{~mL}=1.000 \mathrm{~L}
\end{gathered}
$$

1. 49.582 L of chlorine gas at STP is changed to 96.0 kPa at 45.0 C . What is the new volume?

$$
\begin{array}{ll}
P_{1}=101.325 \mathrm{kPa} & V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}} \\
V_{1}=49.582 \mathrm{~L} & \\
T_{1}=273.1 \mathrm{SK} & \\
P_{2}^{\prime}=96.0 \mathrm{kPa} & \\
V_{1}=? & V_{2}=61.0 \mathrm{OL} \\
T_{1}=318.15 \mathrm{~K} & \\
\text { A sample of fluorine gas with a volume of } 39.94 \mathrm{~L} \text { at SATP is changed to } 111 \mathrm{kPa} \text { and } 34.0 \mathrm{C} .
\end{array}
$$ What is the new volume of the gas?

3. A gas sample has a volume of 60.00 L at 775 mmHg and 30.0 C . What is the volume at SATE?

4. 48.0384 mL of hydrogen gas at 40.00 C and 110.0 kPa is changed to 10.00 C and 150.0 kPa . What is the new volume?

5. A sample of argon gas has a volume of 39.4829 mL at $-23 . .947 \mathrm{C}$ and 660 mmHg . The temperature increased to 39.94 C and the pressure to 887 mmHg . What is the new volume?
6. A sample of xenon gas has a volume of 120.00 mL at 25.00 C and 3 am . What temperature would the gas be changed to if when the volume becomes 75.00 mL and the pressure becomes 8 atm?

