Chemistry 20 - Unit 2 - Absolute Temperature and Charles' Law

Name: \qquad

Complete all of the following problems to the best of your ability. Ensure that you write legibly and that your name is on this assignment. Show all of your work, including the formulas used and the substitution of numerical values. If you have any questions, please refer to your textbooks and notes. Good luck!

You may find the following formulas useful:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{{ }_{\mathrm{o}} \mathrm{C}}+273.15 \\
\mathrm{~T}_{{ }^{\circ} \mathrm{C}}=\mathrm{T}_{\mathrm{K}}-273.15 \\
\mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}
\end{gathered}
$$

1. Convert each of the following Celsius temperatures to Kelvin.
a. $18.65{ }^{\circ} \mathrm{C}$.

b. $200.18^{\circ} \mathrm{C}$.
$200.18+273.15=473.33 K$
c. $88.96{ }^{\circ} \mathrm{C}$.

d. $-44.23^{\circ} \mathrm{C}$.

e. -16.98

f. $-10.0^{\circ} \mathrm{C}$.

2. Convert each of the following Kelvin temperatures to Celsius.
a. 0.00 K .

b. 45.0 K .

$$
45.0-273.15=-228.2^{\circ} \mathrm{C}
$$

c. 32.68 K .

d. 114.592 K .

e. 345.678 K .

f. 890.12 K .

3. In a test of Charles' Law, a gas inside a cylinder with a moveable piston is heated. The initial volume of gas in the cylinder is 0.30 L at $25^{\circ} \mathrm{C}$. What will be the final gas volume (in mL) when the temperature is increased to $315^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& V_{1}=0.30 \mathrm{~L} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~L}}=300 \mathrm{~mL}=3.0 \times 1 \mathrm{O}_{\mathrm{mL}}^{2} \mathrm{~L} \\
& T_{1}=25^{\circ} \mathrm{C}+273.15=298 \mathrm{~K} \quad T_{2}=315+273.15=588 \mathrm{~K}
\end{aligned}
$$

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \rightarrow \frac{3.0 \times 10^{2} \mathrm{~mL}}{298 \mathrm{~K}}=\frac{V_{2}}{588 \mathrm{~K}} \\
V_{2}=5.9 \times 10^{2} \mathrm{~mL}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{l}
V_{1}=15 \mathrm{sL} \\
T_{1}=273 \mathrm{~K}
\end{array} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \rightarrow \frac{15 \mathrm{~mL}}{273 \mathrm{~K}}=\frac{V_{2}}{298 \mathrm{~K}} \rightarrow V_{2}=16 \mathrm{~mL} \\
& T_{2}=298 \mathrm{~K}
\end{aligned} \quad V_{2(\mathrm{kl})}=16 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{100 \mathrm{~mL}} \times \frac{1 \mathrm{~kL}}{1000}=1.6 \times 10-0^{-5} \mathrm{KL}
$$

5. A gas sample with a volume of 2.05 L is removed from a refrigerator at 5 warm up to on a kitchen counter. What volume in litres will the gas occupy at 21.0 "C? 294.2 K

$$
\begin{aligned}
& V_{1}=2.05 \mathrm{~L} \\
& T_{1}=278.2 \mathrm{~K} \\
& T_{2}=244.2 \mathrm{~K} \\
& V_{2}=?
\end{aligned}
$$

6. If 1.5 L of gas in a saucepan is heated from $2.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$, what is its final volume in $n L$? $295.2 \quad 373.2$

$$
V_{1}=1.5 L
$$

$$
V_{2}=\frac{V_{1}}{T_{1}} \times T_{2}=\frac{2.05 L}{278 K} \times 294 k=2.17 L L^{278.2 K}
$$

$$
\begin{aligned}
& T_{1}=295.2 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=373.2 \mathrm{~K} \\
& 10=73
\end{aligned}
$$

$$
V_{2}=? ?
$$

7. A balloon containing helium gas at has a volume of 7.50 L . Calculate the volume of the balloon after it rises 10 km into the ${ }^{\prime}$ upper atmosphere, where the temperature is -36.00 ${ }^{\circ} \mathrm{C}$. Do you believe this gas volume is accurate? Why or why not?

$$
\begin{aligned}
& T_{1}=293.15 \mathrm{~K} \\
& V_{1}=7.50 \mathrm{~L} \\
& T_{2}=237.15 \mathrm{~K} \\
& V_{2}=?
\end{aligned}
$$

$$
V_{2}=\frac{V_{1}}{T_{1}} \times T_{2}=\frac{7.50 \mathrm{~L}}{293.15 \mathrm{~K}} \times 237.15 \mathrm{~K}=6.07 \mathrm{~L}
$$

Not accurate... pressure is NOT constant!
8. Carbon dioxide produced by yeast in bread dough causes the dough to rise, even before it is baked. During baking, the carbon dioxide gas expands. Predict the final volume of 0.10 L of carbon dioxide in bread dough that is heated from to at a constant pressure.

$$
\begin{aligned}
& V_{1}=0.10 \mathrm{~L} \\
& T_{1}=298 \mathrm{~K} \\
& T_{2}=463 \mathrm{~K} \\
& V_{2}=?
\end{aligned}
$$

$$
298^{\circ} \mathrm{K} \quad 463 \mathrm{~K}
$$

$$
V_{2}=\frac{V_{1}}{T_{1}} \times T_{2}=\frac{0.10 \mathrm{~L}}{298 \mathrm{~K}} \times 463 \mathrm{~K}
$$

