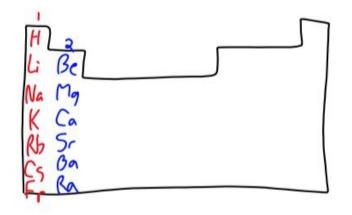

Chemistry 20	Unit 1
Lesson 1: Atomic Numbers and Trends of the Periodic Table	84 mins

Atomic Numbers and Trends of the Periodic Table

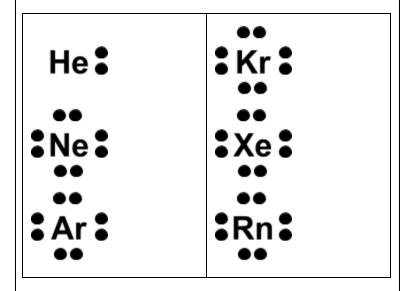
- # of protons
- # of electrons (based off charge)


Group 1 Elements

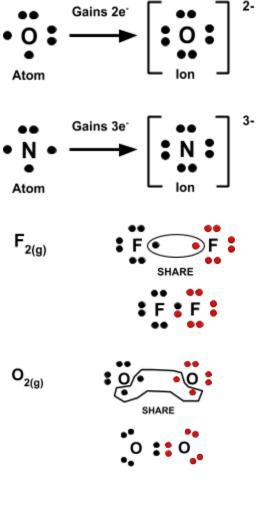
⁵B

5 protons/5 electrons

- Elements with the same # of v.e⁻ will have the same <u>chemical properties</u>
 - o Behavior when mixed
 - Mixed with water, burned, etc.



vis Symbols - Only draw the valence and the chemical symbol	Н•	Group 1 (1 v.e ⁻)
	• Ca•	Group 2 (2 v.e ⁻)
	• B •	Group 1 <u>3</u> (<u>3</u> v.e ⁻)
	• Si •	Group 14 (4 v.e ⁻)
	• P •	Group 1 <u>5</u> (<u>5</u> v.e ⁻)
	• S •	Group 16 (6 v.e ⁻)
	• F • • • • • • • • • • • • • • • • • •	Group 17 (7 v.e ⁻)
	Ne:	Group 18 (8 v.e ⁻)


Chemistry 20	Unit 1
Lesson 2: Lewis Diagrams - For Compounds	84 mins

The Octet Rule

- Group 18 the noble gases
 - Unreactive! (stable)

- The Octet Rule
 - ALL elements WANT Full Valence Shells!
 - Full Valence = Stability
 - Everyone wants to be like a noble gas.
 - N — | N |
- Diatomic Elements
 - Elements of the same type can share electrons to become octet!

- Lewis Diagrams For Compounds
 - Elements in compounds will "share" electrons
 - 1. Count Valence e⁻ (group number)
 - 2. Propose a structure
 - 3. Bond atoms together (1 pair e⁻)
 - 4. Assign remaining valence e

Ex.1

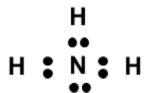
HCI_(aq)

1. Count Valence e

$$1 + 7 = 8e^{-}$$

2. Propose a structure

H CI


3. Bond Atoms together (1 pair e⁻)

H : CI

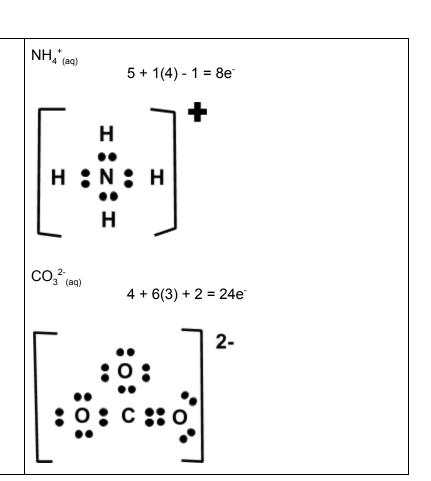
4. Assign remaining valence e

Ex.2

 $NH_{3(g)}$ 5 + 1(3) = 8e⁻¹

Ex.3

Chemistry 20	Unit 1
Lesson 3: Lewis Diagrams Continued	84 mins

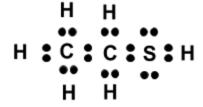

Lewis Diagrams Continued

The more shared electrons the bond, the more strength the bond has	CI CI 7(2) = 14e Single Bond
	O 6(2) = 12e Double Bond
	N

Ions - Lewis Diagrams

lons written in lewis form will have square brackets indicating charge.

- When calculating v.e⁻ remember to include the charge.
- + charge (subtract) or charge (add)

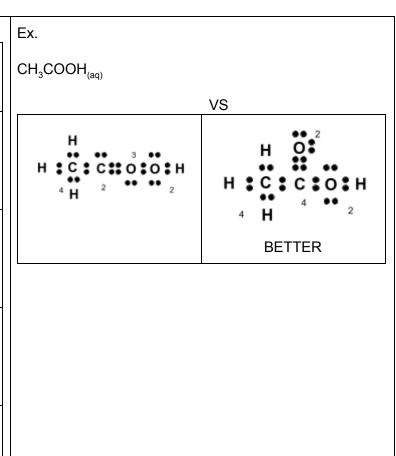


Compounds - Lewis Diagrams

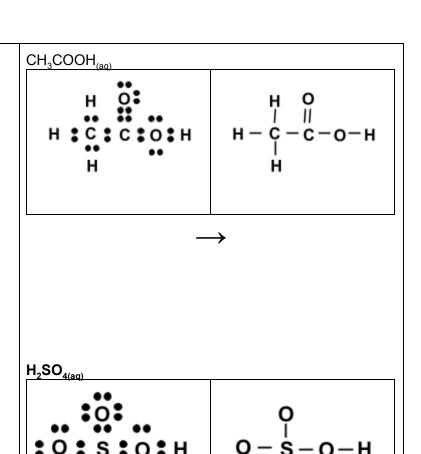
Propose a structure, rearrange until the struct works

$$CH_3OH_{(aq)} = CH_4O_{(aq)}??$$

4 + 1(4) + 6 = 14e⁻

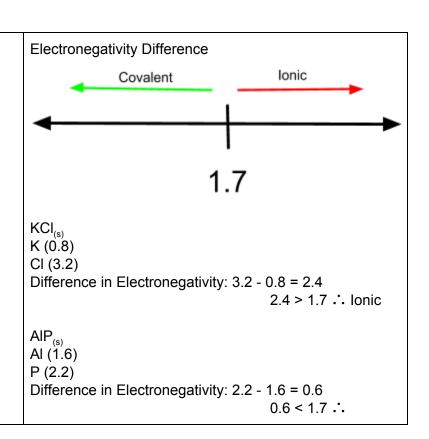

$$CH_3CH_2SH_{(1)}$$
 4(2) + 1(6) + 6 = $20e^{-}$

Chemistry 20	Unit 1
Lesson 4: Bonding Capacity and Electronegativity	84 mins


Bonding Capacity

		,	Ex.
Element	# Bonding e ⁻	# bonds commonly formed	CH₃COO⊦
· C •	4	4	H : C
• N	3	3	
• 0 :	2	2	
• F •	1	1	

Structural Formulas


- Omit lone pairs of electrons and only refer to bonding

Again... kinda

Electronegativity

- How hard atoms pull on e
- Determines the nature of chemical bonds
- Remember that Metal-Non-metal thing... this is why I said most of the time

	covalent
--	----------

Lewis Diagrams and Structural Formulas

If you encounter any difficulties, please refer to your notes or section 3.2 of your textbook.

Complete the following table by stating each entity's chemical formula, calculating the number of valence electrons in each entity, drawing a Lewis diagram, and then drawing a structural formula.

Chemical Name:	Chemical Formula:	Lewis Diagram:	Structural Formula:
Elemental hydrogen	H _{2(g)}		
Elemental bromine	Br _{2(l)}		
Hydrogen iodide	$HI_{(g)}$		
Carbon monoxide	CO _(g)		

Methanol	CH ₃ OH _(I)	
Chlorite ion	CIO ₂ -(aq)	
	2 (04)	
Ethane	C ₂ H ₆	
	22.16	
Ethene	C ₂ H ₄	
	321.14	
Acetylene	C_2H_2	
	02112	
Ethanol	CH CH CH	
Luianoi	CH ₃ CH ₂ OH	

Hydrazine	N ₂ H ₄	
Dichloromethane	CH ₂ Cl ₂	
Oxygen	OAt _{2(g)}	
diastatide		
Hydrogen peroxide	H ₂ O ₂	
3-dichloroprop-1- yne	CHCCHCI ₂	
Dichloroethane	CLLCL	
Dictilotoetilatie	CH ₂ Cl ₂	

Methanal	НСНО	
Hydrogen	11.0	
peroxide	H ₂ O ₂	
Dichloroethyne	C ₂ Cl ₂	
Hydronium ion	H₃O ⁺	
NP(see seed to see		
Nitrosyl ion	NO⁺	
Carbonate ion	CO ₃ (aq)	

Challenge Problems:

Try drawing Lewis Diagrams and their corresponding structural formulas for each of the following compounds!

1,2-dichloroben zene (Hint: some structures are based on rings, not chains of carbon atoms)	C ₆ H ₄ Cl ₂	
Butanoic acid	C₃H₁COOH	
Phosphoric acid	H₃PO₄	

Methyl ethanoate	CH ₃ COOCH ₃	