Chemistry 20	Review of Science 10
Unit Conversion and Significant Figures	84 Mins

Unit Conversations

- Refers changing numerical figures from one unit of measurement to another.
- Ex: meters to centimeters, seconds to nanoseconds, milliliters to litres.
- Most follow the nomicature below.

Prefix	Symbol	Multiplication factor		
exa	E	10^{18}	=	1000000000000000000
peta	P	10^{15}	=	1000000000000000
tera	T	10^{12}	=	1000000000000
giga	G	10^{9}	$=$	1000000000
mega	M	10^{6}	=	1000000
kilo	k	10^{3}	=	1000
hecto	h	10^{2}	=	100
deca	da	10^{1}	=	10
deci	d	10^{-1}	=	0.1
centi	c	10-2	=	0.01
milli	m	10^{-3}	=	0.001
micro	$\boldsymbol{\mu}$	10^{-6}	=	0.000001
nano	n	10^{-9}	=	0.000000001
pico	p	10^{-12}	=	0.000000000001
femto	f	10^{-15}	=	0.000000000000001
atto	a	10^{-18}	$=$	0.000000000000000001

Mass: $1.55 \mathrm{~kg}=$ \qquad g $642 \mathrm{~g} \mathrm{=}$ \qquad \qquad kg	Distance: $2896 \mathrm{~mm}=$ \qquad cm $0.086 \mathrm{~cm}=$ \qquad mm
Volume: $\begin{aligned} & 0.127 \mathrm{~L}=\square \mathrm{mL} \\ & 15.8 \mathrm{~mL}=\square \mathrm{L} \\ & 981 \mathrm{~cm}^{3}=\square \mathrm{L} \\ & 2.65 \mathrm{~m}^{3}=\square \mathrm{cm}^{3} \end{aligned}$	Time: 4 hrs = \qquad min $180 \mathrm{sec}=$ \qquad min $452 \mu \mathrm{~s}=$ \qquad sec

Ratios:

Convert numerator and denominators separately, using multiplication inverses when necessary.

How many mL are in 80 g of ethanol? $(\mathrm{d}=0.79 \mathrm{~g} / \mathrm{mL})$

- Most numbers involved in technical and scientific work are approximate, having been arrived at through some process of measurement.
- However, certain other numbers are exact, having been arrived at through some definition or counting process.

Scientific Notation

- writing large/small numbers using less digits. Using multiplication of powers of 10.
- An example of scientific notation is when you write 4×10^{3} for 4,000 .

NOTES HANDOUT

Significant Figures

0.00003400

1. Convert each of the following numbers to a number having 3 significant figures.
a. 34.579
b. 193.405
c. 23.995
2. Convert each of the following numbers to a number having 4 significant figures.
a. 99.9975
b. 11,687.42
c. 874.992

Chemistry 20 - Unit 0 - Unit Conversions and Significant Figures Practice

1. Convert 25 mL into litres.
2. How many seconds are in $250 \mu \mathrm{~s}$?
3. Convert 9.5 g into milligrams.
4. Express 1.5 L in kilolitres.
5. Convert $3 \times 10^{-2} \mathrm{mg}$ into decigrams.
6. How many megagrams are in 125 cg ?
7. Express $\frac{3.5 \mathrm{~g}}{\mathrm{~mL}}$ in $\frac{\mathrm{kg}}{\mathrm{L}}$.
8. Express $\frac{0.15 \mathrm{kmol}}{d \mathrm{~g}}$ in $\frac{\mathrm{mmol}}{\mathrm{g}}$.
9. Convert each value into correct scientific notation.

a. 0.000934	d. 496×10^{6}
b. 7983000000	e. 0.00006×10^{1}
c. 0.00000000082057	f. 30972×10^{-8}

10. Express each answer using the correct number of significant digits.
a. $55.671 \mathrm{~g}+45.78 \mathrm{~g}$
b. $1.9 \mathrm{~mm}+0.62 \mathrm{~mm}$
c. $87.9478 \mathrm{~L}-86.25 \mathrm{~L}$
d. $\quad 0.350 \mathrm{~mL}+1.70 \mathrm{~mL}+1.019 \mathrm{~mL}$
e. $5.841 \mathrm{~cm} \times 6.03 \mathrm{~cm}$
f. $\quad 17.51 \mathrm{~g} \div 2.2 \mathrm{~cm}^{3}$
