- representing repeated multiplication, using powers
- using patterns to show that a power with an exponent of zero is equal to one
- solving problems involving powers.

Understanding Powers

An exponential expression, or power, has a base and a exponent. For Example, given $2^{3}, 2$ is the base and 3 is the exponent.

When numbers are multiplied together many times over, this is called repeated multiplication.

To simplify a power, convert the power to expanded form and use repeated multiplication to solve. For example, when 2^{5} is converted to expanded form using repeated multiplication, it becomes $2 \times 2 \times 2 \times 2 \times 2=32$.

Brackets are used in powers to groups the base and exponent together inside the brackets: $\left(-3^{3}\right)$. Brackets also separate the base and exponent by placing the exponent outside the brackets: $(-3)^{3}$. If no brackets are used, it is the same as the exponent inside the brackets: $\left(-3^{3}\right)=-3^{3}$.

Example

Evaluate (-9) ${ }^{2}$.

Solution

Step 1
Write the expression in expanded form. The negative sign is inside the brackets, so it is included in the repeated multiplication.
$(-9)^{2}=(-9) \times(-9)$

Step 2
Evaluate the expression.
$(-9) \times(-9)=81$

Example

Evaluate -2 ${ }^{3}$.

Solution

Step 1

Write the power in expanded form. The exponent of 3 only applies to the base of 2 . The negative sign becomes the coefficient of $\mathbf{- 1}$.
$-2^{3}=(-1)(2 \times 2 \times 2)$

Step 2

Evaluate the expression using repeated multiplication
$(-1)(2 \times 2 \times 2)=(-1)(8)=-8$

The zero exponent law state that any number with an exponent of zero is equal to 1 .

$$
a^{0}=1, a \neq 0
$$

Example

Use a pattern to prove that $4^{0}=1$.

Solution

The exponent law states that a^{0} is equal to 1 for a given value of a, where $a \neq 0$.

Step 1

Create a pattern by showing the evaluation of the following powers:
$4^{3}=64$
$4^{2}=16$
$4^{1}=4$
$4^{0}=1$

Step 2

To prove that $4^{0}=1$, divide each of the results from Step 1 by 4 .
$64 \div 4=16$
$16 \div 4=4$
$4 \div 4=1$
The pattern proves the zero exponent law.

