Science 30	Unit B: Chemistry
Lesson 1 - Products of Combustion Reactions	84 mins

Products of Combustion Reactions

combustion: a chemical reaction that occurs in the presence of oxygen and results in the release of energy

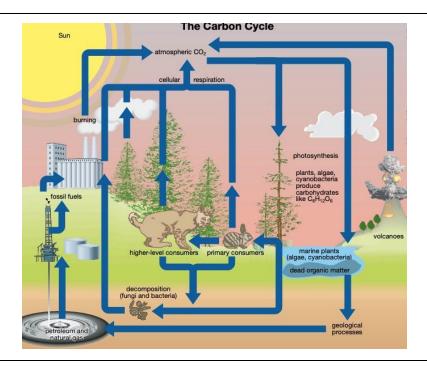
cellular respiration: the process by which cells convert the chemical energy stored in organic molecules (sugars) into energy that cells can use

hydrocarbon: an organic compound containing only carbon and hydrogen atoms

fuel: a substance that releases energy when involved in a chemical reaction (often combustion) or a nuclear reaction

emission: a substance discharged into the atmosphere or into surface water

$$C_xH_y + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$$


$$C_6H_{12}O_{6(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$$

Balancing Combustion Reactions (Really... any chemical reaction)

- 1) Write the unbalanced equation
- 2) Balance the first Element on both sides
- 3) Balance the Second Element on both sides
- 4) Continue till done... leave oxygen til last
 - a) If you can't balance oxygen with a whole number then DOUBLE EVERYTHING you've done, then try again

$$\begin{array}{l} C_2H_{6(g)} + O_{2(g)} \to CO_{2(g)} + H_2O_{(g)} \\ C_2H_{6(g)} + O_{2(g)} \to \textbf{(2)} \ CO_{2(g)} + H_2O_{(g)} \\ C_2H_{6(g)} + O_{2(g)} \to \textbf{(2)} \ CO_{2(g)} + \textbf{(3)} \ H_2O_{(g)} \\ C_2H_{6(g)} + \ref{eq:constraints} \ O_{2(g)} \to \textbf{(2)} \ CO_{2(g)} + \textbf{(3)} \ H_2O_{(g)} \\ \textbf{(2)} \ C_2H_{6(g)} + \textbf{(7)} \ O_{2(g)} \to \textbf{(4)} \ CO_{2(g)} + \textbf{(6)} \ H_2O_{(g)} \\ \textbf{(You will generally end with at least ONE odd number as a coefficient)} \end{array}$$

Carbon Cycle

Carbon Sink and Carbon Sequestering

Carbon Sink

- CO₂ being transformed and stored in a new substance
 - CO₂ in the ocean becomes carbolic acid
 - CO₂ is picked up by plants and converted into sugars

Carbon Sequestering

- Injecting CO₂ into the earth to store it

Other Forms of Combustion

Incomplete Combustion of Carbons

- Produces CO_(g) instead of CO_{2(g)}

Combustion of Sulphurs

Production of SO₂ and SO₃ from the combustions of sulphur

- Production of NO_x from the combustions of sulphur
- Happens at higher temperatures (650°C)

Combustion of Metals

 Trace amounts of Mercury and Lead can be released when coal and other hydrocarbons are burned

Production of Soot and Particulates

- Causes breathing problems

$$2~\text{CH}_{4(g)} + 3~\text{O}_{2(g)} \rightarrow 2~\text{CO}_{(g)} + 4~\text{H}_2\text{O}_{(g)}$$

 $H_2S_{(g)} + O_{2(g)} \rightarrow SO_{2(g)} + H_2O_{(g)}$ (combustion of Sour Gas)

$$SO_{2(g)} + O_{2(g)} \rightarrow SO_{3(g)}$$

$$N_{2(g)} + O_{2(g)} \rightarrow 2 NO_{(g)}$$

$$2 \text{ NO}_{(g)} + \text{O}_{2(g)} \rightarrow 2 \text{ NO}_{2(g)}$$

Sources of SO₂ and NO_x

Natural - Hot springs - Volcanic outgasing	Natural Forest Fires
Man Made emissions from:	Man Made emissions from: • fossil fuel power plants • industrial and domestic furnaces • production of fertilizers • burning of crops • automobiles

Science 30 - Lesson 15 - Products of Combustion Reactions

Name:

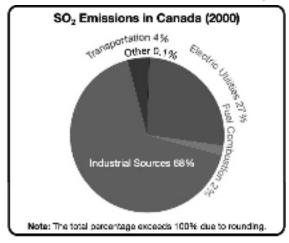
1) Balance the following combustion reactions.

a)
$$C_5H_{12(1)} + O_{2(q)} \rightarrow CO_{2(q)} + H_2O_{(q)}$$

b)
$$C_4H_{8(q)} + C_{2(q)} \rightarrow CO_{2(q)} + H_2O_{(q)}$$

c)
$$\underline{\hspace{1cm}} C_4H_{10(q)} + \underline{\hspace{1cm}} O_{2(q)} \rightarrow \underline{\hspace{1cm}} CO_{2(q)} + \underline{\hspace{1cm}} H_2O_{(q)}$$

- d) combustion of octane _____
- 2) Describe, at the atomic level, what happens to the molecules in a fuel during combustion.
- 3) "The products of a combustion reaction are dependent on the substance being combusted." Explain the meaning of this statement, and include an example.
- 4) Gasoline is a mixture of hydrocarbons, none of which contain nitrogen. Explain how the combustion of gasoline in automobiles can be considered to be a major source of the production of NO_x compounds.
- 5) The Claus process can be used to remove hydrogen sulfide from sour natural gas. The Claus process occurs in two steps:
 - a) Thermal Step (This step occurs in a furnace at high temperatures.)


$$H_2S_{(q)} + D_{2(q)} \rightarrow S_{(s)} + H_2O_{(q)}$$

$$\underline{} H_2 S_{(g)} + \underline{} O_{2(g)} \rightarrow \underline{} SO_{2(g)} + \underline{} H_2 O_{(g)}$$

b) Catalytic Step

c) Balance the three reactions in the Claus process.

- d) Identify one emission, other than those listed in the equations, that is produced by the Claus process.
- e) Improvements to the Claus process focus on reducing emissions. One improvement requires the use of pure oxygen rather than atmospheric air in the furnace. Explain how the use of pure oxygen could result in a reduction to emissions from the Claus process.
- 6) In 2000, emissions of SO₂ in Canada were estimated to be 2.4 x 10⁶ t (tonnes). Prepare a table that shows the mass of sulfur dioxide emissions from each of the sources shown in the figure bellow.

