Science 30	Unit A: Biology
Lesson 2 - The Heart	84 mins

Circulatory System (Cardiovascular System)

 transports and delivers Oxygen, nutrients and wastes chemical messengers Hormones Body's defence cells White Blood Cells Heat (like a car radiator) 	cardio (refers to the heart)
---	------------------------------------

Cardiac Output

 the volume of blood pumped by the heart in one minute, which is equal to the product of stroke volume and heart rate Measured in volume per minute (^L/_{min}) 	Stroke Volume - Amount of blood pushed per beat -		
Cardiac Output = (stroke volume) × (heart rate) = $\frac{volume}{beat} \times \frac{beats}{min}$	Human ~70 mL/beat = ~0.070 L/beat	Horse ~625 mL/beat = ~0.625 L/beat	Cat ~1 mL/beat = ~0.001 L/beat
	Heart Rate - Number of beats per minute		
	Human ~70 beats/min	Horse ~40 beats/min	Cat ~200 beats/min

Examples

 If a male raised his heart rate to 180 beats per minute through intensive exercise, such as running on a treadmill, how much blood would his heart pump per minute? Assume that the stroke volume remains at 70 mL per beat.

Cardiac Output = (*stroke volume*) × (*heart rate*)

Cardiac Output = 70 mL/beat × 180 beats/min

Cardiac Output = 12,600 mL/min...or 12.6 L/min

2) Calculate your resting cardiac output (mine = 62 beats per min)

Cardiac Output = (*stroke volume*) × (*heart rate*)

Cardiac Output = 70 mL/beat × 180 beats/min

Cardiac Output = 12,600 mL/min...or 12.6 L/min

The Heart	
 An Amazing Pump! First muscle to start (in embryo) About the size of a fist Controlled by electrical currents (pacemaker) 	 A muscle Needs oxygen and nutrients Heart muscle supplied by the <u>coronary</u> <u>arteries</u>

Septum: a thick wall of muscle that divides the left and right sides of the heart
Atrium: the smaller upper chamber that receives blood returning to the heart
Ventricle: the larger v-shaped bottom chamber that pumps blood from the heart
Heart Valves: thin flaps of tissue in the heart that open and close to ensure the proper direction for blood flow

Heartbeat

Lub Systole the phase of the heart's cycle when the ventricles contract to eject blood from within the chamber	Drawing
Dub Diastole the phase of the heart's cycle where a chamber of the heart, either an atrium or a ventricle, relaxes and fills with blood	

Heartbeat and Health

Exercise:	Overall lowers heart rate Strengthen heart doesn't have to work as hard
Hot tub:	Quickens heart rate harder to remove heat from the body
Cold Weather:	Slows heart rate easier to remove heat from the body

Target Heart Rates for Exercise Goals

Maximum Safe Heart Rate			
220 – age	Personal Health Goal	Percentage of Maximum Heart rate	
Using a heart rate monitor can greatly increase your exercise potential and health.	maintain fitness level	50 to 60%	
	increase fat burning or weight loss	60 to 70%	
	increase cardiovascular endurance	70 to 80%	
		1	

Science 30 - Lesson 1 - The Heart

Name:

Label and Colour the heart below to show the flow of blood through the heart

Septum:	 	
Atrium:		
Ventricle:	 	
Heart Valves:		

1) Beginning with the vena cava, indicate the order of the following structures of the cardiovascular system through which blood flows: left atrium, right ventricle, lungs, body, right atrium, left ventricle, aorta.

2) Refer to your diagram above Match the structures on the heart to the part of the heart that

- a) receives oxygenated blood from the lungs
- b) sends oxygenated blood to the body
- c) prevents the backflow of blood in the heart
- d) separates the right and left halves of the heart

- e) collects deoxygenated blood from the body
- 3) If a person has a heart murmur it means their heart has a weak or malfunctioning valve in their heart. Usually the mitral or tricuspid valves. How might this affect the blood flow through the heart?
- 4) Person is diagnosed with a "hole" in their heart, this small hole is in between the left and right atrium. How might this affect the blood flow through the heart?
- 5) A typical human male has a stroke volume of 70 mL per beat and a resting heart rate of 72 beats per minutea) Calculate the cardiac output. Express your answer in liters per minute.
 - b) Calculate the volume of blood that would be pumped in ONE DAY based on the cardiac output.
- 6) If an Olympic athlete has an increased stroke volume of 100 mL, calculate their cardiac output at rest (50 BPM), with light excise (115 BPM) and with high-intensity exercise (180 BPM). Assume the stroke volume remains constant.
- 7) Explain why you might expect an Olympic athlete to have a lower resting heart rate than a person with an inactive lifestyle.
 - Maximum Heart Rate

 maintain fitness level

 increase fat burning or weight loss

 increase cardiovascular endurance
- 8) Use your age to calculate what your fitness goal rates should be